MCTpval | R Documentation |
Calculate multiplicity adjusted p-values for a maximum contrast test corresponding to a set of contrasts and given a
set of observed test statistics. This function is exported as it may be a useful building block and used in more
complex testing situations that are not covered by MCTtest
. Most users probably don't need to use this
function.
MCTpval(
contMat,
corMat,
df,
tStat,
alternative = c("one.sided", "two.sided"),
control = mvtnorm.control()
)
contMat |
Contrast matrix to use. The individual contrasts should be saved in the columns of the matrix |
corMat |
Correlation matrix of contrasts |
df |
Degrees of freedom to use for calculation. |
tStat |
Vector of contrast test statistics |
alternative |
Character determining the alternative for the multiple contrast trend test. |
control |
A list specifying additional control parameters for the ‘qmvt’ and ‘pmvt’ calls in the code,
see also |
Numeric containing the calculated p-values.
Bjoern Bornkamp
Pinheiro, J. C., Bornkamp, B., and Bretz, F. (2006). Design and analysis of dose finding studies combining multiple comparisons and modeling procedures, Journal of Biopharmaceutical Statistics, 16, 639–656
MCTtest
, optContr
data(biom)
## define shapes for which to calculate optimal contrasts
modlist <- Mods(emax = 0.05, linear = NULL, logistic = c(0.5, 0.1),
linInt = c(0, 1, 1, 1), doses = c(0, 0.05, 0.2, 0.6, 1))
contMat <- optContr(modlist, w=1)$contMat
## calculate inputs needed for MCTpval
fit <- lm(resp~factor(dose)-1, data=biom)
est <- coef(fit)
vc <- vcov(fit)
ct <- as.vector(est %*% contMat)
covMat <- t(contMat) %*% vc %*% contMat
den <- sqrt(diag(covMat))
tStat <- ct/den
corMat <- cov2cor(t(contMat) %*% vc %*% contMat)
MCTpval(contMat, corMat, df=100-5, tStat)
## compare to
test <- MCTtest(dose, resp, biom, models=modlist)
attr(test$tStat, "pVal")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.