DrBats: Data Representation: Bayesian Approach That's Sparse
Version 0.1.4

Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS 2016.

AuthorGabrielle Weinrott [aut, cre], Brigitte Charnomordic [aut], Benedicte Fontez [aut], Nadine Hilgert [aut], Susan Holmes [aut]
Date of publication2016-12-05 18:28:46
MaintainerGabrielle Weinrott <gabrielle.weinrott@supagro.inra.fr>
LicenseGPL-3
Version0.1.4
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("DrBats")

Getting started

DrBats Data Simulation and Projection
DrBats Dimension Reduction
DrBats Model Evaluation
DrBats Model Fit
DrBats Project

Popular man pages

pca.Deville: Perform a PCA using Deville's method
pca.proj.Xt: PCA data projected onto a histogram basis
postdens: Calculate the unnormalized posterior density of the model
stanfit: A stanfit object fitted to the toydata
visW: Plot the estimates for the latent factors
weighted.Deville: Perform a weighted PCA using Deville's method on a data...
W.QR: Build and decompose a low-rank matrix W
See all...

All man pages Function index File listing

Man pages

calc.loglik: Calculate the log likelihood of the model
coda.obj: Convert a STAN objet to MCMC list
coinertia.drbats: Perform Coinertia Analysis on the PCA of the Weighted PCA and...
drbats.simul: Main simulation function
histoProj: Project a set of curves onto a histogram basis
modelFit: Fit a Bayesian Latent Factor to a data set using STAN
pca.Deville: Perform a PCA using Deville's method
pca.proj.Xt: PCA data projected onto a histogram basis
postdens: Calculate the unnormalized posterior density of the model
stanfit: A stanfit object fitted to the toydata
toydata: A toy longitudinal data set
visbeta: Format scores output for visualization
visW: Plot the estimates for the latent factors
weighted.Deville: Perform a weighted PCA using Deville's method on a data...
W.QR: Build and decompose a low-rank matrix W

Functions

W.QR Man page Source code
calc.loglik Man page Source code
coda.obj Man page Source code
coinertia.drbats Man page Source code
drbats.simul Man page Source code
gen_X Source code
histoProj Man page Source code
intRec Source code
modelFit Man page Source code
pca.Deville Man page Source code
pca.proj.Xt Man page Source code
postdens Man page Source code
simul.matrix.Y Source code
simul.matrix.t Source code
stanfit Man page
theta Source code
toydata Man page
visW Man page Source code
visbeta Man page Source code
weighted.Deville Man page Source code

Files

inst
inst/doc
inst/doc/DataSimulationandProjection.R
inst/doc/DimensionReduction.Rmd
inst/doc/ModelFit.html
inst/doc/DataSimulationandProjection.html
inst/doc/ModelEvaluation.Rmd
inst/doc/DimensionReduction.html
inst/doc/ModelFit.Rmd
inst/doc/ModelFit.R
inst/doc/ModelEvaluation.R
inst/doc/DimensionReduction.R
inst/doc/DrBats.Rmd
inst/doc/DrBats.R
inst/doc/ModelEvaluation.html
inst/doc/DrBats.html
inst/doc/DataSimulationandProjection.Rmd
NAMESPACE
data
data/toydata.rda
data/stanfit.rda
R
R/dimRed.R
R/modelEval.R
R/simul.R
R/toydata.R
R/stanfit.R
R/modelFit.R
vignettes
vignettes/DimensionReduction.Rmd
vignettes/ModelEvaluation.Rmd
vignettes/ModelFit.Rmd
vignettes/DrBats.Rmd
vignettes/DataSimulationandProjection.Rmd
MD5
build
build/vignette.rds
DESCRIPTION
man
man/coda.obj.Rd
man/drbats.simul.Rd
man/W.QR.Rd
man/modelFit.Rd
man/coinertia.drbats.Rd
man/postdens.Rd
man/pca.proj.Xt.Rd
man/toydata.Rd
man/weighted.Deville.Rd
man/calc.loglik.Rd
man/visbeta.Rd
man/histoProj.Rd
man/visW.Rd
man/stanfit.Rd
man/pca.Deville.Rd
DrBats documentation built on May 19, 2017, 3:48 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.