Nothing
# Copyright 2024 DARWIN EU®
#
# This file is part of DrugExposureDiagnostics
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Check time in between drug records per person and report the summary
#'
#' @param cdm CDMConnector reference object
#' @param drugRecordsTable a modified version of the drug exposure table, default "ingredient_drug_records"
#' @param byConcept whether to get result by drug concept
#' @param sampleSize the sample size given in execute checks
#'
#' @return a table with the stats about the time between
summariseTimeBetween <- function(cdm,
drugRecordsTable = "ingredient_drug_records",
byConcept = TRUE,
sampleSize = 10000) {
errorMessage <- checkmate::makeAssertCollection()
checkDbType(cdm = cdm, messageStore = errorMessage)
checkTableExists(
cdm = cdm, tableName = drugRecordsTable,
messageStore = errorMessage
)
checkLogical(byConcept, messageStore = errorMessage)
checkmate::reportAssertions(collection = errorMessage)
if (isTRUE(byConcept)) {
grouping <- c(
"drug_concept_id", "drug",
"ingredient_concept_id",
"ingredient"
)
} else {
grouping <- c("ingredient_concept_id", "ingredient")
}
records <- cdm[[drugRecordsTable]]
recordDays <- records %>%
dplyr::select(
"drug_concept_id",
"drug",
"ingredient_concept_id",
"ingredient",
"drug_exposure_start_date",
"drug_exposure_end_date",
"person_id"
)
summ <- recordDays %>%
dplyr::group_by(dplyr::across(dplyr::all_of(c(grouping, "person_id")))) %>%
dplyr::arrange(.data$person_id, .data$drug_exposure_start_date) %>%
dplyr::mutate(prev_drug_exposure_start_date = dplyr::lag(.data$drug_exposure_start_date)) %>%
dplyr::mutate(time_between_days = !!CDMConnector::datediff(start = "prev_drug_exposure_start_date",
end = "drug_exposure_start_date",
interval = "day")) %>%
dplyr::select(-.data$prev_drug_exposure_start_date) %>%
dplyr::filter(!is.na(.data$time_between_days)) %>%
dplyr::ungroup() %>%
dplyr::group_by(dplyr::across(dplyr::all_of(grouping))) %>%
dplyr::summarise(
n_records = as.integer(dplyr::n()),
n_sample = .env$sampleSize,
n_person = dplyr::n_distinct(.data$person_id),
minimum_time_between_days = min(.data$time_between_days, na.rm = T),
q05_time_between_days = stats::quantile(
.data$time_between_days,
0.05,
na.rm = T
),
q10_time_between_days = stats::quantile(
.data$time_between_days,
0.10,
na.rm = T
),
q25_time_between_days = stats::quantile(
.data$time_between_days,
0.25,
na.rm = T
),
median_time_between_days = stats::median(.data$time_between_days, na.rm = T),
q75_time_between_days = stats::quantile(
.data$time_between_days,
0.75,
na.rm = T
),
q90_time_between_days = stats::quantile(
.data$time_between_days,
0.90,
na.rm = T
),
q95_time_between_days = stats::quantile(
.data$time_between_days,
0.95,
na.rm = T
),
maximum_time_between_days = max(.data$time_between_days, na.rm = T)
) %>%
dplyr::collect()
return(summ)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.