Nothing
test_that("plotDrugRestart works", {
skip_on_cran()
cdm <- mockDrugUtilisation(
con = connection(),
writeSchema = schema(),
drug_exposure = dplyr::tibble(
drug_exposure_id = 1:12,
person_id = c(1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 4, 1),
drug_concept_id = c(
1125360, 2905077, 1125360, 1125360, 1125315, 1125360, 1125360, 1503327,
1503328, 1503297, 1503297, 1125360
),
drug_exposure_start_date = as.Date(c(
"2020-01-15", "2020-01-20", "2020-02-20", "2021-02-15", "2021-05-12",
"2022-01-12", "2022-11-15", "2020-01-01", "2021-03-11", "2010-01-01",
"2010-03-15", "2025-01-01"
)),
drug_exposure_end_date = as.Date(c(
"2020-01-25", "2020-03-15", "2020-02-28", "2021-03-15", "2021-05-25",
"2022-02-15", "2022-12-14", "2020-04-13", "2021-04-20", "2010-01-05",
"2010-05-12", "2025-12-31"
)),
drug_type_concept_id = 0,
quantity = c(10, 20, 30, 1, 10, 5, 15, 20, 30, 14, 10, 2)
),
dus_cohort = dplyr::tibble(
cohort_definition_id = c(1, 1, 1, 1, 1, 2, 2, 2, 2),
subject_id = c(1, 1, 2, 3, 4, 4, 1, 2, 3),
cohort_start_date = as.Date(c(
"2020-01-15", "2020-03-24", "2021-01-15", "2022-02-01", "2010-01-05",
"2010-03-16", "2022-02-01", "2010-01-05", "2010-01-05"
)),
cohort_end_date = as.Date(c(
"2020-02-28", "2020-05-10", "2021-06-08", "2022-12-01", "2010-03-15",
"2010-03-30", "2023-02-01", "2010-05-05", "2010-01-05"
)),
censor_column = as.Date(c(
"2021-02-28", "2021-05-10", "2022-06-08", "2023-12-01", "2010-05-15",
"2011-03-30", "2022-02-01", "2011-05-06", "2010-03-05"
))
),
observation_period = dplyr::tibble(
observation_period_id = 1:4,
person_id = 1:4,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2024-01-01"),
period_type_concept_id = 0
),
person = dplyr::tibble(
person_id = c(1, 2, 3, 4) |> as.integer(),
gender_concept_id = c(8507, 8507, 8532, 8532) |> as.integer(),
year_of_birth = c(2000, 2000, 1988, 1964) |> as.integer(),
day_of_birth = c(1, 1, 24, 13) |> as.integer(),
month_of_birth = 1L,
birth_datetime = as.Date(c(
"2004-05-22", "2003-11-26", "1988-01-24", "1964-01-13"
)),
race_concept_id = 0L,
ethnicity_concept_id = 0L,
location_id = 0L,
provider_id = 0L,
care_site_id = 0L
)
)
conceptlist <- list("a" = 1125360, "b" = c(1503297, 1503327), "c" = 1503328)
cdm <- generateDrugUtilisationCohortSet(cdm = cdm, name = "switch_cohort", conceptSet = conceptlist)
results <- cdm$dus_cohort |>
PatientProfiles::addDemographics(
ageGroup = list(c(0, 50), c(51, 100)), name = "dus_cohort"
) |>
summariseDrugRestart(
switchCohortTable = "switch_cohort", followUpDays = c(100, 300, Inf),
strata = list("age_group", "sex", c("age_group", "sex"))
)
# default
default <- plotDrugRestart(results)
expect_true(ggplot2::is.ggplot(default))
expect_true(all(c(
"cdm_name", "cohort_name", "age_group", "sex", "percentage",
"variable_level"
) %in% colnames(default$data)))
# other combinations
gg1 <- plotDrugRestart(results)
expect_true(ggplot2::is.ggplot(gg1))
mockDisconnect(cdm = cdm)
})
test_that("plotIndication works", {
skip_on_cran()
targetCohortName <- dplyr::tibble(
cohort_definition_id = c(1, 1, 1, 2),
subject_id = c(1, 1, 2, 3),
cohort_start_date = as.Date(c(
"2020-01-01", "2020-06-01", "2020-01-02", "2020-01-01"
)),
cohort_end_date = as.Date(c(
"2020-04-01", "2020-08-01", "2020-02-02", "2020-03-01"
))
)
indicationCohortName <- dplyr::tibble(
cohort_definition_id = c(1, 1, 2, 1),
subject_id = c(1, 3, 1, 1),
cohort_start_date = as.Date(c(
"2019-12-30", "2020-01-01", "2020-05-25", "2020-05-25"
)),
cohort_end_date = as.Date(c(
"2019-12-30", "2020-01-01", "2020-05-25", "2020-05-25"
))
)
attr(indicationCohortName, "cohort_set") <- dplyr::tibble(
cohort_definition_id = c(1, 2),
cohort_name = c("asthma", "covid")
)
condition_occurrence <- dplyr::tibble(
person_id = 1,
condition_start_date = as.Date("2020-05-31"),
condition_end_date = as.Date("2020-05-31"),
condition_occurrence_id = 1,
condition_concept_id = 0,
condition_type_concept_id = 0
)
observationPeriod <- dplyr::tibble(
observation_period_id = c(1, 2, 3),
person_id = c(1, 2, 3),
observation_period_start_date = as.Date(c(
"2015-01-01", "2016-05-15", "2012-12-30"
)),
observation_period_end_date = as.Date("2024-01-01"),
period_type_concept_id = 44814724
)
cdm <- mockDrugUtilisation(
con = connection(),
writeSchema = schema(),
cohort1 = targetCohortName,
cohort2 = indicationCohortName,
condition_occurrence = condition_occurrence,
observation_period = observationPeriod
)
result <- cdm$cohort1 |>
summariseIndication(
indicationCohortName = "cohort2",
indicationWindow = list(c(0, 0), c(-7, 0), c(-30, 0), c(-Inf, 0)),
unknownIndicationTable = "condition_occurrence"
)
expect_no_error(p <- plotIndication(result))
mockDisconnect(cdm = cdm)
})
test_that("plotDrugUtilisation", {
skip_on_cran()
nExposures <- 10000
nPersons <- 1000
cdm <- mockDrugUtilisation(
con = connection(),
writeSchema = schema(),
drug_exposure = dplyr::tibble(
drug_exposure_id = seq_len(nExposures),
person_id = sample(seq_len(nPersons), size = nExposures, replace = TRUE),
drug_concept_id = 1125315L,
drug_type_concept_id = 0,
quantity = 0L
) |>
dplyr::mutate(
rand1 = runif(n = nExposures),
rand2 = runif(n = nExposures),
rand3 = runif(n = nExposures),
total_rand = .data$rand1 + .data$rand2 + .data$rand3,
drug_exposure_start_date = as.Date("2000-01-01") +
as.integer(8788 * .data$rand1 / .data$total_rand),
drug_exposure_end_date = as.Date("2000-01-01") +
as.integer(8788 * (.data$rand1 + .data$rand2) / .data$total_rand)
) |>
dplyr::select(!c("rand1", "rand2", "rand3", "total_rand")),
observation_period = dplyr::tibble(
observation_period_id = seq_len(nPersons),
person_id = observation_period_id,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2024-01-01"),
period_type_concept_id = 0
),
person = dplyr::tibble(
person_id = seq_len(nPersons),
gender_concept_id = sample(c(8507L, 8532L), size = nPersons, replace = TRUE),
year_of_birth = 1990L,
day_of_birth = 1L,
month_of_birth = 1L,
birth_datetime = as.Date("1990-01-01"),
race_concept_id = 0L,
ethnicity_concept_id = 0L,
location_id = 0L,
provider_id = 0L,
care_site_id = 0L
)
)
cdm <- generateDrugUtilisationCohortSet(
cdm = cdm, name = "dus_cohort", conceptSet = list(acetaminophen = 1125315L)
)
result <- cdm$dus_cohort |>
PatientProfiles::addSex(name = "dus_cohort") |>
summariseDrugUtilisation(
ingredientConceptId = 1125315L,
strata = list("sex"),
estimates = c("density", "min", "q25", "median", "q75", "max")
)
expect_no_error(
p1 <- result |>
dplyr::filter(
.data$variable_name == "number exposures",
.data$estimate_name == "median"
) |>
plotDrugUtilisation(
facet = . ~ concept_set,
colour = "sex",
plotType = "barplot"
)
)
expect_no_error(
p2 <- result |>
dplyr::filter(
.data$variable_name == "number exposures",
.data$estimate_name == "median"
) |>
plotDrugUtilisation(
facet = . ~ concept_set,
colour = "sex",
plotType = "scatterplot"
)
)
expect_no_error(
p3 <- result |>
dplyr::filter(.data$variable_name == "number exposures") |>
plotDrugUtilisation(
facet = . ~ concept_set,
colour = "sex",
plotType = "densityplot"
)
)
expect_no_error(
p4 <- result |>
dplyr::filter(.data$variable_name == "number exposures") |>
plotDrugUtilisation(
facet = . ~ concept_set,
colour = "sex",
plotType = "boxplot"
)
)
mockDisconnect(cdm = cdm)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.