| vn.entropy | R Documentation | 
Computes the fit of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data
vn.entropy(data, structure)
| data | Matrix or data frame. Contains variables to be used in the analysis | 
| structure | Numeric or character vector (length =  | 
Returns a list containing:
| VN.Entropy.Fit | The Entropy Fit Index using Von Neumman's entropy | 
| Total.Correlation | The total correlation of the dataset | 
| Average.Entropy | The average entropy of the dataset | 
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
Initial formalization and simulation 
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
# Get EGA result
ega.wmt <- EGA(
  data = wmt2[,7:24], model = "glasso",
  plot.EGA = FALSE # no plot for CRAN checks
)
# Compute Von Neumman entropy
vn.entropy(ega.wmt$correlation, ega.wmt$wc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.