Nothing
# example to normalize the continuous confounders and
# make dummy variables for categorical confoduners
dat.cov <- data.frame(
age = c(1.5, 2.3, 3.1, 4.8, 5.2),
sex = c(1, 2, 1, 2, 2),
race = c(1, 2, 3, 4, 5)
)
# specify the confounder vector
Z.name <- c("age", "sex", "race")
# set levels and make the reference level first for categorical confounders
dat.cov$sex <- factor(dat.cov$sex, 1:2, c('Male', 'Female'))
dat.cov$race <- factor(dat.cov$race,1:5,c("NH-White", "NH-Black",
"MexicanAmerican", "OtherRace", "Hispanic"))
# transform the confounder vector and check
cov_m <- confounder.trans(Z_continuous = c("age"), Z_discrete = c("sex", "race"), data = dat.cov)
Z.name <- cov_m$New.Name
dat.cov <- cov_m$Updated.data
print(Z.name)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.