Nothing
#################################
### ECOGENETICS CLASSES
#################################
#------------------------------------------------------------------------------#
#' eco.correlog-class
#'
#' @name eco.correlog-class
#' @slot OUT analysis output
#' @slot IN analysis input data
#' @slot BEAKS breaks
#' @slot CARDINAL number of elements in each class
#' @slot NAMES variables names
#' @slot METHOD analysis method
#' @slot DISTMETHOD method used in the construction of breaks
#' @slot TEST test method used (bootstrap, permutation)
#' @slot NSIM number of simulations
#' @slot PADJUST P-values adjust method for permutation tests
#' @slot ANGLE angle used for the construction of correlogram
#' @slot BEARING bearing correlogram (logical)
#' @aliases eco.correlog-class
#' @author Leandro Roser \email{learoser@@gmail.com}
#' @keywords internal
setClass("eco.correlog",
representation(OUT = "list",
IN = "list",
BREAKS = "numeric",
CARDINAL = "numeric",
NAMES = "character",
METHOD = "character",
DISTMETHOD = "character",
TEST = "character",
NSIM = "numeric",
PADJUST = "character",
ANGLE = "numericORnull",
BEARING = "logical")
)
#-------------------------------------------------------------------------------#
#' eco.correlogB
#' @name eco.correlogB-class
#' @aliases eco.correlogB-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.correlogB", contains = "eco.correlog")
#------------------------------------------------------------------------------#
#' eco.variogram class
#' @name eco.variogram-class
#' @aliases eco.variogram-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.variogram", contains = "data.frame")
#------------------------------------------------------------------------------##
#' eco.gsa class
#' @slot METHOD method used in the analysis
#' @slot OBS observed value when a single variable is tested
#' @slot EXP expected value when a single variable is tested
#' @slot PVAL P-value when a single variable is tested
#' @slot ALTER alternative hypotesis when a single variable is tested
#' @slot NSIM number of simulations
#' @slot MULTI table with observed and expected values, P-values and alternative
#' hypoteses when multiple variables are tested
#' @aliases eco.gsa-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.gsa",
representation(METHOD = "character",
OBS = "numeric",
EXP = "numeric",
PVAL = "numeric",
ADJUST = "character",
ALTER = "character",
NSIM ="numeric",
MULTI = "list")
)
#------------------------------------------------------------------------------#
#' eco.listlsa
#' @aliases eco.listsa-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.listlsa", contains = "list")
#------------------------------------------------------------------------------#
#' eco.lsa class
#' @slot OUT results
#' @slot METHOD method used in the analysis
#' @slot TEST test method used (bootstrap, permutation)
#' @slot NSIM number of simulations
#' @slot PADJUST P-values adjust method for permutation tests
#' @slot COND conditional randomization (logical)
#' @slot XY input coordinates
#' @slot NAMES variable name
#' @aliases eco.lsa-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.lsa",
representation(OUT = "list",
METHOD = "character",
TEST = "character",
NSIM ="numeric",
PADJ = "character",
COND = "logical",
XY = "data.frame",
NAMES = "characterORnull")
)
#------------------------------------------------------------------------------#
#------------------------------------------------------------------------------#
#' eco.multilsa class
#' @slot METHOD method used in the analysis
#' @slot TEST test method used (bootstrap, permutation)
#' @slot NSIM number of simulations
#' @slot PADJUST P-values adjust method for permutation tests
#' @slot COND conditional randomization (logical)
#' @slot XY input coordinates
#' @slot OBS observed values
#' @slot EXP expected values
#' @slot ALTER test alternative
#' @slot PVAL pvalue for permutation test
#' @slot LWR lower confidence interval bound of the null hypotesis
#' @slot UPPR upper confidence interval bound of the null hypotesis
#' @slot OBS.RES rescaled observed values to [-1, 1] range
#' @aliases eco.multilsa-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.multilsa",
representation(METHOD = "character",
TEST = "character",
NSIM ="numeric",
PADJ = "character",
COND = "logical",
XY = "data.frame",
OBS = "matrix",
EXP = "matrix",
ALTER = "matrix",
PVAL = "matrix",
LWR = "matrix",
UPPR = "matrix",
OBS.RES = "matrix",
POP = "matrixORnull")
)
#------------------------------------------------------------------------------#
#' eco.weight class
#' @slot METHOD weights construction method
#' @slot PAR parameters used for the construction of breaks
#' @slot PAR.VAL values of the parameters used for the construction of breaks
#' @slot ROW.SD row standardization (logical)
#' @slot SELF data self-included (logical)
#' @slot W weights list
#' @slot XY input coordinates
#' @slot NONZERO number non-zero connections
#' @slot NONZEROIND number of individuals
#' @slot NONZEROINDROW individuals with non-null connections
#' with non-zero connections (as percentage)
#' @slot AVERAGE average number of connection (as percentage)
#' @slot AVG.DIST average distance between connected individuals
#' @slot ANGLE angle used for the construction of correlogram
#' @aliases eco.weight-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.weight",
representation(W = "matrix",
XY = "data.frame",
METHOD = "character",
PAR = "characterORnull",
PAR.VAL = "numericORnull",
ROW.SD = "logical",
SELF ="logical",
NONZERO = "numeric",
NONZEROIND = "numeric",
CONNECTED = "numeric",
AVG = "numeric",
AVG.DIST = "numeric",
ANGLE = "numericORnull")
)
#------------------------------------------------------------------------------#
#' eco.lagweight class
#' @slot PAR parameters used for the construction of breaks
#' @slot PAR.VAL values of the parameters used for the construction of breaks
#' @slot ROW.SD row standardization (logical)
#' @slot SELF data self-included (logical)
#' @slot W weights list
#' @slot XY input coordinates
#' @slot MEAN mean class distances
#' @slot LOGMEAN mean of the class distances logarithm
#' @slot CARDINAL number of elements in each class
#' @slot BREAKS breaks
#' @slot METHOD breaks construction method
#' @slot ANGLE angle used for the construction of correlogram
#' @aliases eco.lagweight-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.lagweight",
representation(W = "list",
XY = "data.frame",
PAR = "character",
PAR.VAL = "numeric",
ROW.SD = "logical",
SELF ="logical",
CUMMUL = "logical",
MEAN = "numeric",
LOGMEAN = "numeric",
CARDINAL = "numeric",
BREAKS = "numeric",
METHOD = "character",
ANGLE = "numericORnull")
)
#------------------------------------------------------------------------------#
#' eco.mlm-class
#' @name eco.mlm-class
#' @keywords internal
#' @slot MLM mlm results
#' @slot SUMMARY.MLM summary of the results
#' @slot ANOVA.MLM anovas for the results
#' @slot DF1 data frame
#' @slot DF2 data frame
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @aliases eco.mlm-class
setClass("eco.mlm",
representation( MLM = "list",
SUMMARY.MLM = "list",
ANOVA.MLM = "list",
PREDICTED = "data.frame",
RESIDUALS = "data.frame",
DF1 = "dataframeORmatrix",
DF2 = "dataframeORmatrix")
)
#------------------------------------------------------------------------------#
#' eco.mctree-class
#' @name eco.mctree-class
#' @keywords internal
#' @slot TREES trees obtained
#' @slot PREDICTIONS predictions of the analysis
#' @slot FREQUENCIES frequencies of individuals per class in nodes
#' @slot DF1 data frame
#' @slot DF2 data frame
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @aliases eco.mctree-class
setClass("eco.mctree",
representation( TREES = "list",
CLASSPREDICT = "list",
FREQUENCIES = "list",
PREDICTED = "data.frame",
RESIDUALS = "data.frame",
DF1 = "dataframeORmatrix",
DF2 = "dataframeORmatrix")
)
#------------------------------------------------------------------------------#
#' eco.detrend class
#' @slot POLY.DEG polynomial degree used in the analysis
#' @slot RES detrended data
#' @slot XY projected coordinates
#' @slot MODEL models selected with the Akaike criterion
#' @slot ANALYSIS object of class "eco.mlm" with
#' the regression results for each variable
#' @aliases eco.detrend-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.detrend",
representation(POLY.DEG = "numeric",
RES = "data.frame",
XY = "data.frame",
MODEL = "list",
ANALYSIS ="eco.mlm")
)
#------------------------------------------------------------------------------#
#' int.multiplot class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("int.multiplot")
#------------------------------------------------------------------------------#
#' eco.IBD class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("eco.IBD", representation(GLOBALTEST = "character", SP = "list"), contains = "eco.correlog")
#------------------------------------------------------------------------------#
#------------------------------------------------------------------------------#
#' ecolist class
#' @aliases ecolist-class
#' @author Leandro Roser \email{leandroroser@@ege.fcen.uba.ar}
#' @keywords internal
setClass("ecolist", contains = "list")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.