Nothing
#' Compute an index of knowledge complexity of industries using the eigenvector method
#'
#' This function computes an index of knowledge complexity of industries using the eigenvector method from regions - industries (incidence) matrices. Technically, the function returns the eigenvector associated with the second largest eigenvalue of the projected industry - industry matrix.
#' @param mat An incidence matrix with regions in rows and industries in columns
#' @param rca Logical; should the index of relative comparative advantage (RCA - also refered to as location quotient) first be computed? Defaults to FALSE (a binary matrix - 0/1 - is expected as an input), but can be set to TRUE if the index of relative comparative advantage first needs to be computed
#' @return A numeric vector representing the index of knowledge complexity of industries. The vector contains the values of the eigenvector associated with the second largest eigenvalue of the projected industry - industry matrix.
#' @keywords complexity
#' @export
#' @examples
#' ## generate a region - industry matrix with full count
#' set.seed(31)
#' mat <- matrix(sample(0:10, 20, replace = TRUE), ncol = 4)
#' rownames(mat) <- c("R1", "R2", "R3", "R4", "R5")
#' colnames(mat) <- c("I1", "I2", "I3", "I4")
#'
#' ## run the function
#' tci(mat, rca = TRUE)
#'
#' ## generate a region - industry matrix in which cells represent the presence/absence of a rca
#' set.seed(31)
#' mat <- matrix(sample(0:1, 20, replace = TRUE), ncol = 4)
#' rownames(mat) <- c("R1", "R2", "R3", "R4", "R5")
#' colnames(mat) <- c("I1", "I2", "I3", "I4")
#'
#' ## run the function
#' tci(mat)
#'
#' ## generate the simple network of Hidalgo and Hausmann (2009) presented p.11 (Fig. S4)
#' countries <- c("C1", "C1", "C1", "C1", "C2", "C3", "C3", "C4")
#' products <- c("P1", "P2", "P3", "P4", "P2", "P3", "P4", "P4")
#' my_data <- data.frame(countries, products)
#' my_data$freq <- 1
#' mat <- get_matrix(my_data)
#'
#' ## run the function
#' tci(mat)
#' @author Pierre-Alexandre Balland \email{p.balland@uu.nl}
#' @seealso \code{\link{location_quotient}}, \code{\link{ubiquity}}, \code{\link{diversity}}, \code{\link{morc}}, \code{\link{kci}}, \code{\link{mort}}
#' @references Hidalgo, C. and Hausmann, R. (2009) The building blocks of economic complexity, \emph{Proceedings of the National Academy of Sciences} \strong{106}: 10570 - 10575. \cr
#' \cr
#' Balland, P.A. and Rigby, D. (2017) The Geography of Complex Knowledge, \emph{Economic Geography} \strong{93} (1): 1-23.
tci <- function(mat, rca = FALSE) {
# remove null observations
mat <- mat[rowSums(mat) > 0, ]
mat <- mat[, colSums(mat) > 0]
mat
if (rca) {
share_tech_city <- mat / rowSums(mat)
share_tech_total <- colSums(mat) / sum(mat)
lq <- t(t(share_tech_city) / share_tech_total)
lq[is.na(lq)] <- 0
lq[lq < 1] <- 0
lq[lq > 1] <- 1
mat <- lq
# compute the share of a tech in a city's portfolio
# markov chain - row stochastic
c <- mat / rowSums(mat)
c
# sum of the rows = 1
rowSums(c)
# compute the share of a city in the overall produmation of a tech
# markov chain - row stochastic
t <- t(mat) / colSums(mat)
t
# sum of the rows = 1
rowSums(t)
# multiplying t by c gives a tech-tech Markov chain (row stochastic)
tt <- round(t %*% c, 4)
tt
# sum of the rows = 1
rowSums(tt)
# calculate the eigenvalues and eigenvemators
e <- eigen(tt)
e
# the dominant eigenvalue of a stochastic matrix is 1
# the second eigenvalue is important here
# it governs the rate at which the random process given by
# the stochastic matrix converges to its stationary distribution
v <- e$vec[, 2]
v
tci <- as.numeric(v) / sum(as.numeric(v))
tci
# eigenvectors do not have a sign
# we make sure to choose the eigen that correlates with diversity
if (cor(tci, ubiquity(mat),
use = "pairwise.complete.obs",
method = "spearman"
) > 0) {
tci <- tci * (-1)
}
} else {
# compute the share of a tech in a city's portfolio
# markov chain - row stochastic
c <- mat / rowSums(mat)
c
# sum of the rows = 1
rowSums(c)
# compute the share of a city in the overall produmation of a tech
# markov chain - row stochastic
t <- t(mat) / colSums(mat)
t
# sum of the rows = 1
rowSums(t)
# multiplying t by c gives a tech-tech Markov chain (row stochastic)
tt <- round(t %*% c, 4)
tt
# sum of the rows = 1
rowSums(tt)
# calculate the eigenvalues and eigenvemators
e <- eigen(tt)
e
# the dominant eigenvalue of a stochastic matrix is 1
# the second eigenvalue is important here
# it governs the rate at which the random process given by
# the stochastic matrix converges to its stationary distribution
v <- e$vec[, 2]
v
tci <- as.numeric(v) / sum(as.numeric(v))
tci
# eigenvectors do not have a sign
# we make sure to choose the eigen that correlates with diversity
if (cor(tci, ubiquity(mat),
use = "pairwise.complete.obs",
method = "spearman"
) > 0) {
tci <- tci * (-1)
}
}
return(tci)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.