eff.ini.seceig.general: General conservative matrix maximal eigenpair

Description Usage Arguments Value Note See Also Examples

Description

Calculate the next to maximal eigenpair for the general conservative matrix.

Usage

1
eff.ini.seceig.general(Q, z0 = NULL, c1 = 1000, digit.thresh = 6)

Arguments

Q

The input general matrix.

z0

The type of initial z_0 used to calculate the approximation of ρ(Q). There are two types: 'fixed' and 'Auto' corresponding to two choices of z_0 in paper.

c1

A large constant.

digit.thresh

The precise level of output results.

Value

A list of eigenpair object are returned, with components z, v and iter.

z

The approximating sequence of the maximal eigenvalue.

v

The approximating eigenfunction of the corresponding eigenvector.

iter

The number of iterations.

Note

The conservativity of matrix Q=(q_{ij}) means that the sums of each row of matrix Q are all 0.

See Also

eff.ini.seceig.tri for the tridiagonal matrix next to the maximal eigenpair.

Examples

1
2
3
4
Q = matrix(c(-30, 1/5, 11/28, 55/3291, 30, -17, 275/42, 330/1097,
0, 84/5, -20, 588/1097, 0, 0, 1097/84, -2809/3291), 4, 4)
eff.ini.seceig.general(Q, z0 = 'Auto', digit.thresh = 5)
eff.ini.seceig.general(Q, z0 = 'fixed', digit.thresh = 5)

EfficientMaxEigenpair documentation built on May 2, 2019, 2:17 a.m.