# eff.ini.seceig.general: General conservative matrix maximal eigenpair In EfficientMaxEigenpair: Efficient Initials for Computing the Maximal Eigenpair

## Description

Calculate the next to maximal eigenpair for the general conservative matrix.

## Usage

 `1` ```eff.ini.seceig.general(Q, z0 = NULL, c1 = 1000, digit.thresh = 6) ```

## Arguments

 `Q` The input general matrix. `z0` The type of initial z_0 used to calculate the approximation of ρ(Q). There are two types: 'fixed' and 'Auto' corresponding to two choices of z_0 in paper. `c1` A large constant. `digit.thresh` The precise level of output results.

## Value

A list of eigenpair object are returned, with components z, v and iter.

 `z` The approximating sequence of the maximal eigenvalue. `v` The approximating eigenfunction of the corresponding eigenvector. `iter` The number of iterations.

## Note

The conservativity of matrix Q=(q_{ij}) means that the sums of each row of matrix Q are all 0.

`eff.ini.seceig.tri` for the tridiagonal matrix next to the maximal eigenpair.
 ```1 2 3 4``` ```Q = matrix(c(-30, 1/5, 11/28, 55/3291, 30, -17, 275/42, 330/1097, 0, 84/5, -20, 588/1097, 0, 0, 1097/84, -2809/3291), 4, 4) eff.ini.seceig.general(Q, z0 = 'Auto', digit.thresh = 5) eff.ini.seceig.general(Q, z0 = 'fixed', digit.thresh = 5) ```