Description Usage Arguments Details Value Author(s) References See Also Examples
Estimated Instantaneous Reproduction Number
estimate_R
estimates the reproduction number of an epidemic, given the
incidence time series and the serial interval distribution.
1 2 3 4 5 6 7 8 | estimate_R(
incid,
method = c("non_parametric_si", "parametric_si", "uncertain_si", "si_from_data",
"si_from_sample"),
si_data = NULL,
si_sample = NULL,
config = make_config(incid = incid, method = method)
)
|
incid |
One of the following
Note that the cases from the first time step are always all assumed to be imported cases. |
method |
One of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample" (see details). |
si_data |
For method "si_from_data" ; the data on dates of symptoms of pairs of infector/infected individuals to be used to estimate the serial interval distribution (see details). |
si_sample |
For method "si_from_sample" ; a matrix where each column gives one distribution of the serial interval to be explored (see details). |
config |
An object of class |
Analytical estimates of the reproduction number for an epidemic over predefined time windows can be obtained within a Bayesian framework, for a given discrete distribution of the serial interval (see references).
Several methods are available to specify the serial interval distribution.
In short there are five methods to specify the serial interval distribution
(see help for function make_config
for more detail on each method).
In the first two methods, a unique serial interval distribution is
considered, whereas in the last three, a range of serial interval
distributions are integrated over:
In method "non_parametric_si" the user specifies the discrete distribution of the serial interval
In method "parametric_si" the user specifies the mean and sd of the serial interval
In method "uncertain_si" the mean and sd of the serial interval are each drawn from truncated normal distributions, with parameters specified by the user
In method "si_from_data", the serial interval distribution is directly estimated, using MCMC, from interval censored exposure data, with data provided by the user together with a choice of parametric distribution for the serial interval
In method "si_from_sample", the user directly provides the sample of serial interval distribution to use for estimation of R. This can be a useful alternative to the previous method, where the MCMC estimation of the serial interval distribution could be run once, and the same estimated SI distribution then used in estimate_R in different contexts, e.g. with different time windows, hence avoiding to rerun the MCMC every time estimate_R is called.
an object of class estimate_R
, with components:
R: a dataframe containing: the times of start and end of each time window considered ; the posterior mean, std, and 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975 quantiles of the reproduction number for each time window.
method: the method used to estimate R, one of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample"
si_distr: a vector or dataframe (depending on the method) containing the discrete serial interval distribution(s) used for estimation
SI.Moments: a vector or dataframe (depending on the method) containing the mean and std of the discrete serial interval distribution(s) used for estimation
I: the time series of total incidence
I_local: the time series of incidence of local cases (so that
I_local + I_imported = I
)
I_imported: the time series of incidence of imported cases (so that
I_local + I_imported = I
)
dates: a vector of dates corresponding to the incidence time series
MCMC_converged (only for method si_from_data
): a boolean
showing whether the Gelman-Rubin MCMC convergence diagnostic was successful
(TRUE
) or not (FALSE
)
Anne Cori a.cori@imperial.ac.uk
Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013). Wallinga, J. and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (AJE 2004). Reich, N.G. et al. Estimating incubation period distributions with coarse data (Statis. Med. 2009)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | ## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the reproduction number (method "non_parametric_si")
## when not specifying t_start and t_end in config, they are set to estimate
## the reproduction number on sliding weekly windows
res <- estimate_R(incid = Flu2009$incidence,
method = "non_parametric_si",
config = make_config(list(si_distr = Flu2009$si_distr)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## to specify t_start and t_end in config, e.g. to have biweekly sliding
## windows
t_start <- seq(2, nrow(Flu2009$incidence)-13)
t_end <- t_start + 13
res <- estimate_R(incid = Flu2009$incidence,
method = "non_parametric_si",
config = make_config(list(
si_distr = Flu2009$si_distr,
t_start = t_start,
t_end = t_end)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 14-day window
## finishing on that day.
## example with an incidence object
## create fake data
library(incidence)
data <- c(0,1,1,2,1,3,4,5,5,5,5,4,4,26,6,7,9)
location <- sample(c("local","imported"), length(data), replace=TRUE)
location[1] <- "imported" # forcing the first case to be imported
## get incidence per group (location)
incid <- incidence(data, groups = location)
## Estimate R with assumptions on serial interval
res <- estimate_R(incid, method = "parametric_si",
config = make_config(list(
mean_si = 2.6, std_si = 1.5)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## estimate the reproduction number (method "parametric_si")
res <- estimate_R(Flu2009$incidence, method = "parametric_si",
config = make_config(list(mean_si = 2.6, std_si = 1.5)))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## estimate the reproduction number (method "uncertain_si")
res <- estimate_R(Flu2009$incidence, method = "uncertain_si",
config = make_config(list(
mean_si = 2.6, std_mean_si = 1,
min_mean_si = 1, max_mean_si = 4.2,
std_si = 1.5, std_std_si = 0.5,
min_std_si = 0.5, max_std_si = 2.5,
n1 = 100, n2 = 100)))
plot(res)
## the bottom left plot produced shows, at each each day,
## the estimate of the reproduction number over the 7-day window
## finishing on that day.
## Not run:
## Note the following examples use an MCMC routine
## to estimate the serial interval distribution from data,
## so they may take a few minutes to run
## load data on rotavirus
data("MockRotavirus")
## estimate the reproduction number (method "si_from_data")
MCMC_seed <- 1
overall_seed <- 2
R_si_from_data <- estimate_R(MockRotavirus$incidence,
method = "si_from_data",
si_data = MockRotavirus$si_data,
config = make_config(list(si_parametric_distr = "G",
mcmc_control = make_mcmc_control(list(burnin = 1000,
thin = 10, seed = MCMC_seed),
n1 = 500, n2 = 50,
seed = overall_seed))))
## compare with version with no uncertainty
R_Parametric <- estimate_R(MockRotavirus$incidence,
method = "parametric_si",
config = make_config(list(
mean_si = mean(R_si_from_data$SI.Moments$Mean),
std_si = mean(R_si_from_data$SI.Moments$Std))))
## generate plots
p_uncertainty <- plot(R_si_from_data, "R", options_R=list(ylim=c(0, 1.5)))
p_no_uncertainty <- plot(R_Parametric, "R", options_R=list(ylim=c(0, 1.5)))
gridExtra::grid.arrange(p_uncertainty, p_no_uncertainty,ncol=2)
## the left hand side graph is with uncertainty in the SI distribution, the
## right hand side without.
## The credible intervals are wider when accounting for uncertainty in the SI
## distribution.
## estimate the reproduction number (method "si_from_sample")
MCMC_seed <- 1
overall_seed <- 2
SI.fit <- coarseDataTools::dic.fit.mcmc(dat = MockRotavirus$si_data,
dist = "G",
init.pars = init_mcmc_params(MockRotavirus$si_data, "G"),
burnin = 1000,
n.samples = 5000,
seed = MCMC_seed)
si_sample <- coarse2estim(SI.fit, thin = 10)$si_sample
R_si_from_sample <- estimate_R(MockRotavirus$incidence,
method = "si_from_sample",
si_sample = si_sample,
config = make_config(list(n2 = 50,
seed = overall_seed)))
plot(R_si_from_sample)
## check that R_si_from_sample is the same as R_si_from_data
## since they were generated using the same MCMC algorithm to generate the SI
## sample (either internally to EpiEstim or externally)
all(R_si_from_sample$R$`Mean(R)` == R_si_from_data$R$`Mean(R)`)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.