Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/wallinga_teunis.R
wallinga_teunis
estimates the case reproduction number of an epidemic,
given the incidence time series and the serial interval distribution.
1 2 3 4 5 | wallinga_teunis(
incid,
method = c("non_parametric_si", "parametric_si"),
config
)
|
incid |
One of the following
|
method |
the method used to estimate R, one of "non_parametric_si", "parametric_si", "uncertain_si", "si_from_data" or "si_from_sample" |
config |
a list with the following elements:
|
Estimates of the case reproduction number for an epidemic over predefined time windows can be obtained, for a given discrete distribution of the serial interval, as proposed by Wallinga and Teunis (AJE, 2004). Confidence intervals are obtained by simulating a number (config$n_sim) of possible transmission trees (only done if config$n_sim > 0).
The methods vary in the way the serial interval distribution is specified.
———————– method "non_parametric_si"
———————–
The discrete distribution of the serial interval is directly specified in the
argument config$si_distr
.
———————– method "parametric_si"
———————–
The mean and standard deviation of the continuous distribution of the serial
interval are given in the arguments config$mean_si
and
config$std_si
. The discrete distribution of the serial interval is
derived automatically using discr_si
.
a list with components:
R: a dataframe containing: the times of start and end of each time window considered ; the estimated mean, std, and 0.025 and 0.975 quantiles of the reproduction number for each time window.
si_distr: a vector containing the discrete serial interval distribution used for estimation
SI.Moments: a vector containing the mean and std of the discrete serial interval distribution(s) used for estimation
I: the time series of total incidence
I_local: the time series of incidence of
local cases (so that I_local + I_imported = I
)
I_imported:
the time series of incidence of imported cases (so that I_local +
I_imported = I
)
dates: a vector of dates corresponding to the incidence time series
Anne Cori a.cori@imperial.ac.uk
Cori, A. et al. A new framework and software to estimate time-varying reproduction numbers during epidemics (AJE 2013). Wallinga, J. and P. Teunis. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures (AJE 2004).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## load data on pandemic flu in a school in 2009
data("Flu2009")
## estimate the case reproduction number (method "non_parametric_si")
res <- wallinga_teunis(Flu2009$incidence,
method="non_parametric_si",
config = list(t_start = seq(2, 26), t_end = seq(8, 32),
si_distr = Flu2009$si_distr,
n_sim = 100))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the case reproduction number over the 7-day window
## finishing on that day.
## estimate the case reproduction number (method "parametric_si")
res <- wallinga_teunis(Flu2009$incidence, method="parametric_si",
config = list(t_start = seq(2, 26), t_end = seq(8, 32),
mean_si = 2.6, std_si = 1.5,
n_sim = 100))
plot(res)
## the second plot produced shows, at each each day,
## the estimate of the case reproduction number over the 7-day window
## finishing on that day.
|
TableGrob (3 x 1) "arrange": 3 grobs
z cells name grob
incid 1 (1-1,1-1) arrange gtable[layout]
R 2 (2-2,1-1) arrange gtable[layout]
SI 3 (3-3,1-1) arrange gtable[layout]
TableGrob (3 x 1) "arrange": 3 grobs
z cells name grob
incid 1 (1-1,1-1) arrange gtable[layout]
R 2 (2-2,1-1) arrange gtable[layout]
SI 3 (3-3,1-1) arrange gtable[layout]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.