Nothing
## ----eval=TRUE,echo=FALSE-----------------------------------------------------
set.seed(1)
## ----eval=TRUE, warning=FALSE, message=FALSE----------------------------------
library(EvidenceSynthesis)
simulationSettings <- createSimulationSettings(
nSites = 5,
n = 10000,
treatedFraction = 0.75,
nStrata = 5,
hazardRatio = 2,
randomEffectSd = 0.5
)
populations <- simulatePopulations(simulationSettings)
## ----eval=TRUE----------------------------------------------------------------
library(Cyclops)
# Assume we are at site 1:
population <- populations[[1]]
cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox"
)
cyclopsFit <- fitCyclopsModel(cyclopsData)
## ----eval=TRUE----------------------------------------------------------------
# Hazard ratio:
exp(coef(cyclopsFit))
# 95% confidence interval:
exp(confint(cyclopsFit, parm = "x")[2:3])
## ----eval=TRUE----------------------------------------------------------------
approximation <- approximateLikelihood(
cyclopsFit = cyclopsFit,
parameter = "x",
approximation = "adaptive grid"
)
head(approximation)
## ----eval=TRUE----------------------------------------------------------------
plotLikelihoodFit(
approximation = approximation,
cyclopsFit = cyclopsFit,
parameter = "x"
)
## ----eval=TRUE----------------------------------------------------------------
fitModelInDatabase <- function(population) {
cyclopsData <- createCyclopsData(Surv(time, y) ~ x + strata(stratumId),
data = population,
modelType = "cox"
)
cyclopsFit <- fitCyclopsModel(cyclopsData)
approximation <- approximateLikelihood(cyclopsFit,
parameter = "x",
approximation = "adaptive grid"
)
return(approximation)
}
approximations <- lapply(populations, fitModelInDatabase)
## ----eval=TRUE, message=FALSE-------------------------------------------------
estimate <- computeFixedEffectMetaAnalysis(approximations)
estimate
## ----eval=TRUE, message=FALSE-------------------------------------------------
estimate <- computeBayesianMetaAnalysis(approximations)
exp(estimate[1:3])
## ----eval=TRUE, message=FALSE-------------------------------------------------
plotPosterior(estimate)
## ----eval=TRUE, message=FALSE-------------------------------------------------
plotMcmcTrace(estimate)
## ----eval=TRUE, message=FALSE-------------------------------------------------
estimate2 <- computeBayesianMetaAnalysis(approximations, priorSd = c(2, 0.1))
exp(estimate2[1:3])
## ----eval=TRUE, message=FALSE-------------------------------------------------
# Make up some data site labels:
labels <- paste("Data site", LETTERS[1:length(populations)])
plotMetaAnalysisForest(
data = approximations,
labels = labels,
estimate = estimate,
xLabel = "Hazard Ratio",
showLikelihood = TRUE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.