mca.eigen.fix: mca.eigen.fix

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/mca.eigen.fix.R

Description

A function for correcting the eigenvalues and output from multiple correspondence analysis (MCA, epMCA)

Usage

1
2
mca.eigen.fix(DATA, mca.results, make_data_nominal = TRUE, numVariables = NULL, 
correction = c("b"), symmetric = FALSE)

Arguments

DATA

original data (i.e., not transformed into disjunctive coding)

mca.results

output from epMCA

make_data_nominal

a boolean. Should DATA be transformed into disjunctive coding? Default is TRUE.

numVariables

the number of actual measures/variables in the data (typically the number of columns in DATA)

correction

which corrections should be applied? "b" = Benzécri correction, "bg" = Greenacre adjustment to Benzécri correction.

symmetric

a boolean. If the results from MCA are symmetric or asymmetric factor scores. Default is FALSE.

Value

mca.results

a modified version of mca.results. Factor scores (e.g., $fi, $fj), and $pdq are updated based on corrections chosen.

Author(s)

Derek Beaton

References

Benzécri, J. P. (1979). Sur le calcul des taux d'inertie dans l'analyse d'un questionnaire. Cahiers de l'Analyse des Données, 4, 377-378.
Greenacre, M. J. (2007). Correspondence Analysis in Practice. Chapman and Hall.

See Also

epMCA

Examples

1
2
3
4
5
6
7
8
9
	data(mca.wine)
	#No corrections used in MCA
	mca.wine.res.uncor <- epMCA(mca.wine$data,correction=NULL)
	data <- mca.wine$data
	expo.output <- mca.wine.res.uncor$ExPosition.Data
	#mca.eigen.fix with just Benzécri correction		
	mca.wine.res.b <- mca.eigen.fix(data, expo.output,correction=c('b'))
	#mca.eigen.fix with Benzécri + Greenacre adjustment	
	mca.wine.res.bg <- mca.eigen.fix(data,expo.output,correction=c('b','g'))

Example output

Loading required package: prettyGraphs
dev.new(): using pdf(file="Rplots1.pdf")
dev.new(): using pdf(file="Rplots2.pdf")
dev.new(): using pdf(file="Rplots3.pdf")

ExPosition documentation built on May 1, 2019, 7:06 p.m.