# dce_efficiency: Efficiency Measures for Discrete Choice Experiments In ExpertChoice: Design of Discrete Choice and Conjoint Analysis

## Description

Efficiency Measures for Discrete Choice Experiments

## Usage

 `1` ```dce_efficiency(augmented_full_factorial, choice_sets) ```

## Arguments

 `augmented_full_factorial` The level augmented full factorial. See tutorial step 2. `choice_sets` A list of choice sets generated by one of the methods used to convert from fractional factorial designs.

## Value

a list of named output.

## References

Street, D.J., Burgess, L. and Louviere, J.J., 2005. Quick and easy choice sets: constructing optimal and nearly optimal stated choice experiments. International Journal of Research in Marketing, 22(4), pp.459-470.

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35``` ```# See Step 8 of the Practical Introduction to ExpertChoice vignette. # Step 1 attrshort = list(condition = c("0", "1", "2"), technical =c("0", "1", "2"), provenance = c("0", "1")) #Step 2 # ff stands for "full fatorial" ff <- full_factorial(attrshort) af <- augment_levels(ff) # af stands for "augmented factorial" # Step 3 # Choose a design type: Federov or Orthogonal. Here an Orthogonal one is used. nlevels <- unlist(purrr::map(ff, function(x){length(levels(x))})) fractional_factorial <- DoE.base::oa.design(nlevels = nlevels, columns = "min34") # Step 4 & 5 # The functional draws out the rows from the original augmented full factorial design. colnames(fractional_factorial) <- colnames(ff) fractional <- search_design(ff, fractional_factorial) # Step 5 (skipped, but important, see vignette) # Step 6 # Two modulators c(1,1,1) and c(0,1,1) are specified. dce_modulo <- modulo_method( fractional, list(c(1,1,1),c(0,1,1)) ) # Step 7 (skipped) # Step 8! -- Inspect the D-efficiency using the Street et. al method of the DCE design. # NOTE: the af is used at this stage not the ff. dce_efficiency(af, dce_modulo) ```

ExpertChoice documentation built on April 14, 2020, 7:36 p.m.