Nothing
#' Compute Optimal Delta for AT-CSR Thresholding (base-10 log version)
#'
#' Computes the optimal threshold level delta following Qiu and Liyanage (2019),
#' assuming all logs are base-10 as per the original paper.
#'
#' @importFrom stats pnorm
#' @keywords internal
#'
compute_optimal_delta <- function(Sigma_eps, Theta, T) {
N <- nrow(Sigma_eps)
# Standardize the covariances
z_mat <- abs(Sigma_eps) / sqrt(Theta)
# Compute a0 and a1
a0 <- 1 / sqrt(log10(log10(N)))
a1 <- 2 - min(sqrt(2 + log10(T / N)), 2)
# Range for moderate standardized covariances
z_range_min <- a1 + a0
z_range_max <- 2
# Compute M_hat
upper_tri_indices <- which(upper.tri(z_mat), arr.ind = TRUE)
z_vals <- z_mat[upper_tri_indices]
M_hat <- sum(z_vals > z_range_min & z_vals < z_range_max)
# Compute q and V
q <- N * (N - 1) / 2
logN <- log10(N)
Phi <- pnorm
V <- 2 * q * (Phi(2 * sqrt(logN)) - Phi((a1 + a0) * sqrt(logN)))
# Estimate N2
N2_hat <- max(M_hat - V, sqrt(logN))
# Compute delta_0
delta <- sqrt(2 * (2 - log10(N2_hat * logN^(-0.5)) / logN))
return(delta)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.