Description Usage Arguments Value References
Rprop is a fast and robust adaptive step method based on backpropagation. For details, please refer to the original paper given in References section.
1 2 | mlp_teach_rprop(net, input, output, tol_level, max_epochs, l2reg = 0,
u = 1.2, d = 0.5, gmax = 50, gmin = 1e-06, report_freq = 0)
|
net |
an object of |
input |
numeric matrix, each row corresponds to one input vector, the number of columns must be equal to the number of neurons in the network input layer |
output |
numeric matrix with rows corresponding to expected outputs, the number of columns must be equal to the number of neurons in the network output layer, the number of rows must be equal to the number of input rows |
tol_level |
numeric value, error (MSE) tolerance level |
max_epochs |
integer value, maximal number of epochs (iterations) |
l2reg |
numeric value, L2 regularization parameter (default 0) |
u |
numeric value, Rprop algorithm parameter (default 1.2) |
d |
numeric value, Rprop algorithm parameter (default 0.5) |
gmax |
numeric value, Rprop algorithm parameter (default 50) |
gmin |
numeric value, Rprop algorithm parameter (default 1e-6) |
report_freq |
integer value, progress report frequency, if set to 0 no information is printed on the console (this is the default) |
Two-element list, the first field (net
) contains the trained network,
the second (mse
) - the learning history (MSE in consecutive epochs).
M. Riedmiller. Rprop - Description and Implementation Details: Technical Report. Inst. f. Logik, Komplexitat u. Deduktionssysteme, 1994.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.