Nothing
#' @name NDPB
#'
#' @title
#' Wrapper Functions for the Non-Adaptive Discrete Guo-Romano Procedure
#'
#' @description
#' `NDPB()` is a wrapper function of [`discrete.PB()`] for computing
#' non-adaptive \[DPB\]. It simply passes its arguments to [`discrete.PB()`]
#' with fixed `adaptive = FALSE`.
#'
#' @templateVar test.results TRUE
#' @templateVar pCDFlist TRUE
#' @templateVar alpha TRUE
#' @templateVar zeta TRUE
#' @templateVar critical.values TRUE
#' @templateVar exact TRUE
#' @templateVar select.threshold TRUE
#' @templateVar pCDFlist.indices TRUE
#' @templateVar triple.dots TRUE
#' @templateVar weights FALSE
#' @template param
#'
#' @template details_crit
#'
#' @templateVar Adaptive TRUE
#' @templateVar Weighting FALSE
#' @template return
#'
#' @seealso
#' [`discrete.PB()`], [`DPB()`], [`discrete.GR()`], [`DGR()`], [`NDGR()`],
#' [`discrete.LR()`], [`DLR()`], [`NDLR()`]
#'
#' @references
#' Döhler, S. & Roquain, E. (2020). Controlling False Discovery Exceedance for
#' Heterogeneous Tests. *Electronic Journal of Statistics*, *14*(2),
#' pp. 4244-4272. \doi{10.1214/20-EJS1771}
#'
#' @template example
#' @examples
#'
#' # Non-adaptive DPB (exact) without critical values; using results object
#' NDPB.exact.fast <- NDPB(test.results)
#' summary(NDPB.exact.fast)
#'
#' # Non-adaptive DPB (exact) with critical values; using extracted p-values and supports
#' NDPB.exact.crit <- NDPB(raw.pvalues, pCDFlist, critical.values = TRUE)
#' summary(NDPB.exact.crit)
#'
#' # Non-adaptive DPB (normal approx.) without critical values; using extracted p-values and supports
#' NDPB.norm.fast <- NDPB(raw.pvalues, pCDFlist, exact = FALSE)
#' summary(NDPB.norm.fast)
#'
#' # Non-adaptive DPB (normal approx.) with critical values; using test results object
#' NDPB.norm.crit <- NDPB(test.results, critical.values = TRUE, exact = FALSE)
#' summary(NDPB.norm.crit)
#'
#' @export
NDPB <- function(test.results, ...) UseMethod("NDPB")
#' @rdname NDPB
#' @export
NDPB.default <- function(
test.results,
pCDFlist,
alpha = 0.05,
zeta = 0.5,
critical.values = FALSE,
exact = TRUE,
select.threshold = 1,
pCDFlist.indices = NULL,
...
){
out <- discrete.PB.default(
test.results = test.results,
pCDFlist = pCDFlist,
alpha = alpha,
zeta = zeta,
adaptive = FALSE,
critical.values = critical.values,
exact = exact,
select.threshold = select.threshold,
pCDFlist.indices = pCDFlist.indices,
...
)
out$Data$Data.name <- paste(
deparse(substitute(test.results)),
"and",
deparse(substitute(pCDFlist))
)
return(out)
}
#' @rdname NDPB
#' @export
NDPB.DiscreteTestResults <- function(
test.results,
alpha = 0.05,
zeta = 0.5,
critical.values = FALSE,
exact = TRUE,
select.threshold = 1,
...
){
out <- discrete.PB.DiscreteTestResults(
test.results = test.results,
alpha = alpha,
zeta = zeta,
adaptive = FALSE,
critical.values = critical.values,
exact = exact,
select.threshold = select.threshold,
...
)
out$Data$Data.name <- deparse(substitute(test.results))
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.