FDboost-package: FDboost: Boosting Functional Regression Models

Description Details Author(s) References See Also


Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm.


This package is intended to fit regression models with functional variables. It is possible to fit models with functional response and/or functional covariates, resulting in scalar-on-function, function-on-scalar and function-on-function regression. Details on the functional regression models that can be fitted with FDboost can be found in Brockhaus et al. (2015, 2016, 2017) and Ruegamer et al. (2016). A hands-on tutorial for the package can be found at https://arxiv.org/abs/1705.10662.

Using component-wise gradient boosting as fitting procedure, FDboost relies on the R package mboost (Hothorn et al., 2017). A comprehensive tutorial to mboost is given in Hofner et al. (2014).

The main fitting function is FDboost. The model complexity is controlled by the number of boosting iterations (mstop). Like the fitting procedures in mboost, the function FDboost DOES NOT select an appropriate stopping iterations. This must be chosen by the user. The user can determine an adequate stopping iteration by resampling methods like cross-validation or bootstrap. This can be done using the function applyFolds.


Sarah Brockhaus and David Ruegamer


Brockhaus, S., Ruegamer, D. and Greven, S. (2017): Boosting Functional Regression Models with FDboost. https://arxiv.org/abs/1705.10662

Brockhaus, S., Scheipl, F., Hothorn, T. and Greven, S. (2015): The functional linear array model. Statistical Modelling, 15(3), 279-300.

Brockhaus, S., Melcher, M., Leisch, F. and Greven, S. (2017): Boosting flexible functional regression models with a high number of functional historical effects, Statistics and Computing, 27(4), 913-926.

Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2016): Signal regression models for location, scale and shape with an application to stock returns. https://arxiv.org/abs/1605.04281

Hothorn T., Buehlmann P., Kneib T., Schmid M., and Hofner B. (2017). mboost: Model-Based Boosting, R package version 2.8-0, https://cran.r-project.org/package=mboost

Hofner, B., Mayr, A., Robinzonov, N., Schmid, M. (2014). Model-based Boosting in R: A Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29, 3-35. https://cran.r-project.org/package=mboost/vignettes/mboost_tutorial.pdf

Ruegamer D., Brockhaus, S., Gentsch K., Scherer, K., Greven, S. (2016). Detecting synchronisation in EEG- and EMG-Signals via boosted functional historical models. http://arxiv.org/abs/1609.06070

See Also

FDboost for the main fitting function and applyFolds for model tuning via resampling methods.

FDboost documentation built on May 31, 2017, 8:26 p.m.