Description Usage Format Details Author(s) Source Examples
The effect of two agents of immuno-activating ability that may induce cell differentiation was investigated.
1 |
A data frame with 16 observations on the following 3 variables.
number of cells differentiating
dose of TNF, U/ml
dose of IFN, U/ml
The effect of two agents of immuno-activating ability that may induce cell differentiation was investigated. As response variable the number of cells that exhibited markers after exposure was recorded. It is of interest if the agents TNF (tumor necrosis factor) and IFN (interferon) stimulate cell differentiation independently, or if there is a synergetic effect. 200 cells were examined at each dose combination.
Kjetil Halvorsen
Ludwig Fahrmeir, Gerhard Tutz (1994): Multivariate Statistical Modelling Based on Generalized Linear Models. Springer Series in Statistics. Springer Verlag. New-York Berlin Heidelberg
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | str(cells)
cells.poisson <- glm(y~TNF+IFN+TNF:IFN, data=cells,
family=poisson)
summary(cells.poisson)
confint(cells.poisson)
# Now we follow the book, example 2.6, page 51:
# there seems to be overdispersion?
cells.quasi <- glm(y~TNF+IFN+TNF:IFN, data=cells,
family=quasipoisson)
summary(cells.quasi)
anova(cells.quasi)
confint(cells.quasi)
# We follow the book, example 2.7, page 56:
with(cells, tapply(y, factor(TNF), function(x) c(mean(x), var(x))))
# which might indicate the use of a negative binomial model
|
'data.frame': 16 obs. of 3 variables:
$ y : int 11 18 20 39 22 38 52 69 31 68 ...
$ TNF: int 0 0 0 0 1 1 1 1 10 10 ...
$ IFN: int 0 4 20 100 0 4 20 100 0 4 ...
Call:
glm(formula = y ~ TNF + IFN + TNF:IFN, family = poisson, data = cells)
Deviance Residuals:
Min 1Q Median 3Q Max
-4.6824 -2.8179 -0.8222 1.9183 4.4728
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.436e+00 6.377e-02 53.877 < 2e-16 ***
TNF 1.553e-02 8.308e-04 18.689 < 2e-16 ***
IFN 8.946e-03 9.669e-04 9.253 < 2e-16 ***
TNF:IFN -5.670e-05 1.348e-05 -4.205 2.61e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 707.03 on 15 degrees of freedom
Residual deviance: 142.39 on 12 degrees of freedom
AIC: 243.69
Number of Fisher Scoring iterations: 4
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 3.308307e+00 3.558360e+00
TNF 1.390603e-02 1.716434e-02
IFN 7.043823e-03 1.083599e-02
TNF:IFN -8.318686e-05 -3.031362e-05
Call:
glm(formula = y ~ TNF + IFN + TNF:IFN, family = quasipoisson,
data = cells)
Deviance Residuals:
Min 1Q Median 3Q Max
-4.6824 -2.8179 -0.8222 1.9183 4.4728
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.436e+00 2.184e-01 15.727 2.26e-09 ***
TNF 1.553e-02 2.846e-03 5.456 0.000146 ***
IFN 8.946e-03 3.312e-03 2.701 0.019273 *
TNF:IFN -5.670e-05 4.619e-05 -1.227 0.243176
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasipoisson family taken to be 11.73534)
Null deviance: 707.03 on 15 degrees of freedom
Residual deviance: 142.39 on 12 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 4
Analysis of Deviance Table
Model: quasipoisson, link: log
Response: y
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 15 707.03
TNF 1 468.60 14 238.43
IFN 1 78.27 13 160.16
TNF:IFN 1 17.78 12 142.39
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.9786721160 3.838424e+00
TNF 0.0100046341 2.121871e-02
IFN 0.0023374841 1.540787e-02
TNF:IFN -0.0001481632 3.358201e-05
$`0`
[1] 22.0000 143.3333
$`1`
[1] 45.2500 400.9167
$`10`
[1] 74.000 1608.667
$`100`
[1] 161.5 1655.0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.