gppca | R Documentation |
Creating an gppca
class for generalized probabilistic
principal component analysis of correlated data.
gppca(input,output, d, est_d=FALSE, shared_params=TRUE, kernel_type="matern_5_2")
input |
a vector for the sorted input locations. The length is equal to the number of observations. |
output |
a k*d matrix for the observations at the sorted input locations. Here k is the number of locations and n is the number of observations. |
d |
number of latent factors. |
est_d |
a bool value, default is |
shared_params |
a bool value, default is |
kernel_type |
a |
gppca
returns an S4 object of class gppca
.
Mengyang Gu [aut, cre], Xinyi Fang [aut], Yizi Lin [aut] Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
Gu, M., & Shen, W. (2020), Generalized probabilistic principal component analysis of correlated data, Journal of Machine Learning Research, 21(13), 1-41.
library(FastGaSP)
library(rstiefel)
matern_5_2_funct <- function(d, beta_i) {
cnst <- sqrt(5.0)
matOnes <- matrix(1, nrow = nrow(d), ncol = ncol(d))
result <- cnst * beta_i * d
res <- (matOnes + result + (result^2) / 3) * exp(-result)
return(res)
}
n=200
k=8
d=4
beta_real=0.01
sigma_real=1
sigma_0_real=sqrt(.01)
input=seq(1,n,1)
R0_00=as.matrix(abs(outer(input,input,'-')))
R_r = matern_5_2_funct(R0_00, beta_real)
L_sample = t(chol(R_r))
kernel_type='matern_5_2'
input=sort(input)
delta_x=input[2:length(input)]-input[1:(length(input)-1)]
A=rustiefel(k, d) ##sample from Stiefel manifold
Factor=matrix(0,d,n)
for(i in 1: d){
Factor[i,]=sigma_real^2*L_sample%*%rnorm(n)
}
output=A
##constucting the gppca.model
gppca_obj <- gppca(input, output, d, shared_params = TRUE,est_d=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.