R/quadvar.R

Defines functions quadvar

Documented in quadvar

### quadvar.R  (2006-16)
###
###    Estimation of the Hurst parameter of the fractal Brownian field
###             by the quadratic variations method
###
### Copyright 2006-16 Alexandre Brouste and Sophie Lambert-Lacroix
###

quadvar <- function(process,parameter){

##    INPUT VARIABLES
#########################
##  process   : an object of class process

##    OUTPUT VARIABLES
##########################
## H: real  Estimation of the Hurst parameter of the fractal Brownian field


##  TEST ON INPUT VARIABLES
##############################

if(missing(process)){
	cat("Error from quadvar.R: parameter process is missing\n")
	return(NULL)
}	
	
if(!isS4(process)){
	cat("Error from quadvar.R: parameter process is not of type process\n")
	return(NULL)
}else if(!class(process)[1]=="process"){
	cat("Error from quadvar.R: parameter process is not of type process\n")
	return(NULL)
}		

name<-process@name
manifold<-process@manifold
nameofgrid<-whichgrid(manifold)

if (name=="fBm"){

#Test on Values (to do)

res<-process@values

if (manifold@name=="plane"){	
	
	if (nameofgrid=="regular"){
		
		N<-sqrt(length(res))
		Z<-matrix(res,N,N)
		
		
	}else if(nameofgrid=="visualization"){
		

		N<-sqrt(length(res))	
		Ng<-log(N-1)/log(2) 	
	

		f<-t(res)	
		
		# Construct the Z matrix
		#########################
		Z<-matrix(f[1:4],2,2,byrow=TRUE)
		indice <- 5
		niveau <- 1
		while (niveau<=Ng){
			Y <- matrix(0,2^(niveau)+1,2^(niveau)+1)
			for (l in 1:(2^(niveau)+1)){ #columns
				for (m in 1:(2^(niveau)+1)){ #rows
					if (((m/2-floor(m/2))!=0) & ((l/2-floor(l/2))!=0))
					Y[m,l]<-Z[((m-1)/2+1),((l-1)/2+1)] 
				}}
			
			for (m in 1:2^(niveau-1)){ 
				for (l in 1:2^(niveau-1)) {
					pc_x<-2*l
					pc_y<-2*m
					Y[pc_x,pc_y]<-f[indice]
					indice<-indice+1
					Y[(pc_x+1),pc_y]<-f[indice]
					indice<-indice+1
					Y[pc_x,(pc_y+1)]<-f[indice] 
					indice<-indice+1
					if (m==1){Y[pc_x,(pc_y-1)]<-f[indice]
						indice<-indice+1}
					if (l==1){Y[(pc_x-1),pc_y]<-f[indice]
						indice<-indice+1}
				}
			}
			niveau<-niveau+1
			Z<-Y
		}		
		
		

	}else{
		cat("Error from quadvar.R: no estimator have been implemented for this grid")	
		return(NULL)
	}

	
	
	N <- dim(Z)[1]
	M <- N-1
	V2 <- rep(0,2)
	
	for (m in 1:2){
		K <- floor(M/2^(m-1)) 
		j1 <- seq(from=(2*2^(m-1)+1), to=(2^(m-1)*K+1), by=2^(m-1))
		i2 <- 1:N
		j2 <- seq(from=(2^(m-1)+1), to=(2^(m-1)*(K-1)+1), by=2^(m-1))
		j3 <- seq(from=1, to=(2^(m-1)*(K-2)+1), by=2^(m-1))
		Delta21 <- Z[j1,i2]-2*Z[j2,i2]+Z[j3,i2]
		j4 <- 1:(K-1)
		Delta2 <- Delta21[j4,j1]- 2*Delta21[j4,j2]+Delta21[j4,j3]
		V2[m] <- sum(sum((Delta2)^2))
	}
	
	H <- log(V2[2]/V2[1])/(2*log(2))+1
	return(H)
	
}else if (manifold@name=="line"){
    cat("Error from quadvar.R: no estimator have been implemented for this process for the moment")
	return(NULL)
    
}else{
	cat("Error from quadvar.R: no estimator have been implemented for this process")
	return(NULL)	
}


}else if(name=="mBm"){
    
    if (manifold@name=="plane"){
       
        res<-process@values
        N<-sqrt(length(res))
		Z<-matrix(res,N,N)
        
        #Test missing parameter
        # test a faire sur h et la taille de la grille (h ne doit pas etre plus petit que la grille)
        
        
        tt<-parameter$point
        hh<-parameter$h
        return(locquadvar(Z,tt,hh))
        
    }else if (manifold@name=="line"){
        cat("Error from quadvar.R: no estimator have been implemented for this process for the moment")
        return(NULL)
    }else{
        cat("Error from quadvar.R: no estimator have been implemented for this process")
        return(NULL)
        
    }
    
    

}else{
    
    cat("Error from quadvar.R: no estimator have been implemented for this process")
	return(NULL)
    
}

}

Try the FieldSim package in your browser

Any scripts or data that you put into this service are public.

FieldSim documentation built on May 29, 2017, 2:10 p.m.