Nothing
#' Italian Quarterly National Accounts
#'
#' @description
#' A subset of the data used by Girolimetto et al. (2023) from the Italian Quarterly
#' National Accounts (output, income and expenditure sides) spanning the period
#' 2000:Q1-2019:Q4.
#'
#' @usage
#' # 21 time series of the Italian Quarterly National Accounts
#' itagdp
#'
#' @format
#' \code{itagdp} is a \eqn{(80 \times 21)} \code{ts} object, corresponding to
#' 21 time series of the Italian Quarterly National Accounts (2000:Q1-2019:Q4).
#'
#' @references
#' Girolimetto, D. and Di Fonzo, T. (2023), Point and probabilistic forecast reconciliation
#' for general linearly constrained multiple time series,
#' \emph{Statistical Methods & Applications}, in press. \doi{10.1007/s10260-023-00738-6}.
#'
#' @source <https://ec.europa.eu/eurostat/web/national-accounts/>
"itagdp"
#' @rdname itagdp
#'
#' @usage
#' # 'agg_mat' and 'cons_mat' for the output side
#' outside
#'
#' @format \code{outside}, \code{income} and \code{expenditure} are lists with two elements:
#' \itemize{
#' \item{\code{agg_mat} contains the \eqn{(1 \times 2)}, \eqn{(2 \times 4)}, or \eqn{(6 \times 8)}
#' aggregation matrix according to output, income or expenditure side, respectively.}
#' \item{\code{cons_mat} contains the \eqn{(1 \times 3)}, \eqn{(2 \times 6)}, or \eqn{(6 \times 14)}
#' zero constraints matrix according to output, income or expenditure side, respectively.}
#' }
#'
"outside"
#' @rdname itagdp
#'
#' @usage
#' # 'agg_mat' and 'cons_mat' for the expenditure side
#' expside
#'
#' @format NULL
"expside"
#' @rdname itagdp
#'
#' @usage
#' # 'agg_mat' and 'cons_mat' for the income side
#' incside
#'
#' @format NULL
"incside"
#' @rdname itagdp
#'
#' @usage
#' # zero constraints matrix encompassing output, expenditure and income sides
#' gdpconsmat
#'
#' @format \code{gdpconsmat} is the complete \eqn{(9 \times 21)} zero constraints matrix
#' encompassing output, expenditure and income sides.
"gdpconsmat"
#' Australian Tourism Demand dataset
#'
#' @description
#' The Australian Tourism Demand dataset (Wickramasuriya et al. 2019) measures the number of
#' nights Australians spent away from home. It includes 228 monthly observations of Visitor
#' Nights (VNs) from January 1998 to December 2016, and has a cross-sectional grouped
#' structure based on a geographic hierarchy crossed by purpose of travel. The geographic
#' hierarchy comprises 7 states, 27 zones, and 76 regions, for a total of 111 nested geographic
#' divisions. Six of these zones are each formed by a single region, resulting in 105 unique
#' nodes in the hierarchy. The purpose of travel comprises four categories: holiday, visiting
#' friends and relatives, business, and other. To avoid redundancies (Girolimetto et al. 2023),
#' 24 nodes (6 zones are formed by a single region) are not considered, resulting in an unbalanced
#' hierarchy of 525 (304 bottom and 221 upper time series) unique nodes instead of the theoretical
#' 555 with duplicated nodes.
#'
#' @usage
#' # 525 time series of the Australian Tourism Demand dataset
#' vndata
#'
#' @format
#' \code{vndata} is a \eqn{(228 \times 525)} \code{ts} object, corresponding to
#' 525 time series of the Australian Tourism Demand dataset (1998:01-2016:12).
#'
#' @references
#' Girolimetto, D., Athanasopoulos, G., Di Fonzo, T. and Hyndman, R.J. (2024),
#' Cross-temporal probabilistic forecast reconciliation: Methodological and
#' practical issues. \emph{International Journal of Forecasting}, 40, 3, 1134-1151.
#' \doi{10.1016/j.ijforecast.2023.10.003}
#'
#' Wickramasuriya, S.L., Athanasopoulos, G. and Hyndman, R.J. (2019), Optimal forecast
#' reconciliation for hierarchical and grouped time series through trace minimization,
#' \emph{Journal of the American Statistical Association}, 114, 526, 804-819.
#' \doi{10.1080/01621459.2018.1448825}
#'
#' @source <https://robjhyndman.com/publications/mint/>
"vndata"
#' @rdname vndata
#'
#' @usage
#' # aggregation matrix
#' vnaggmat
#'
#' @format \code{vnaggmat} is the \eqn{(221 \times 304)} aggregation matrix.
"vnaggmat"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.