View source: R/EW_Xw_maineffects_self.R
EW_Xw_maineffects_self | R Documentation |
function for calculating X=h(x) and E_w=E(nu(beta^T h(x))) give a design point x=(1,x1,...,xd)^T
EW_Xw_maineffects_self(
x,
joint_Func_b,
Lowerbounds,
Upperbounds,
link = "logit",
h.func = NULL
)
x |
x=(x1,...,xd) – design point/experimental setting |
joint_Func_b |
The prior joint probability distribution of the parameters |
Lowerbounds |
The lower limit of the prior distribution for each parameter |
Upperbounds |
The upper limit of the prior distribution for each parameter |
link |
link = "logit" – link function, default: "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log" |
h.func |
function h(x)=(h1(x),...,hp(x)), default (1,x1,...,xd) |
X=h(x)=(h1(x),...,hp(x)) – a row for design matrix
E_w – E(nu(b^t h(x)))
link – link function applied
hfunc.temp = function(y) {c(y,1);}; # y -> h(y)=(y1,y2,y3,1)
link.temp="logit"
paras_lowerbound<-rep(-Inf, 4)
paras_upperbound<-rep(Inf, 4)
gjoint_b<- function(x) {
mu1 <- -0.5; sigma1 <- 1
mu2 <- 0.5; sigma2 <- 1
mu3 <- 1; sigma3 <- 1
mu0 <- 1; sigma0 <- 1
d1 <- stats::dnorm(x[1], mean = mu1, sd = sigma1)
d2 <- stats::dnorm(x[2], mean = mu2, sd = sigma2)
d3 <- stats::dnorm(x[3], mean = mu3, sd = sigma3)
d4 <- stats::dnorm(x[4], mean = mu0, sd = sigma0)
return(d1 * d2 * d3 * d4)
}
x.temp = c(2,1,3)
EW_Xw_maineffects_self(x=x.temp,joint_Func_b=gjoint_b, Lowerbounds=paras_lowerbound,
Upperbounds=paras_upperbound, link=link.temp, h.func=hfunc.temp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.