View source: R/EW_liftoneDoptimal_MLM_func.R
EW_liftoneDoptimal_MLM_func | R Documentation |
function of EW liftone for multinomial logit model
EW_liftoneDoptimal_MLM_func(
m,
p,
Xi,
J,
thetavec_matrix,
link = "continuation",
reltol = 1e-05,
maxit = 500,
p00 = NULL,
random = FALSE,
nram = 3
)
m |
number of design points |
p |
number of parameters in the multinomial logit model |
Xi |
model matrix |
J |
number of response levels in the multinomial logit model |
thetavec_matrix |
the matrix of the bootstrap parameter values of beta |
link |
multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation" |
reltol |
relative tolerance for convergence, default to 1e-5 |
maxit |
the number of maximum iteration, default to 500 |
p00 |
specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation |
random |
TRUE or FALSE, if TRUE then the function will run with additional "nram" number of initial allocation p00, default to be TRUE |
nram |
when random == TRUE, the function will generate nram number of initial points, default is 3 |
p reported EW D-optimal approximate allocation
p0 the initial approximate allocation that derived the reported EW D-optimal design
Maximum the maximum of the determinant of the Expectation of Fisher information matrix
Convergence TRUE or FALSE, whether the algorithm converges
itmax, maximum iterations
m=7
p=5
J=3
link.temp = "continuation"
factor_x=c(80,100,120,140,160,180,200)
hfunc.temp = function(y){
matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
}
Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m)
for(i in 1:m) {
Xi[,,i]=hfunc.temp(factor_x[i])
}
bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
-0.0535, -0.0274, -0.0096,-0.0291, -0.04,
0.0004, 0.0003, 0.0002, 0.0003, 0.1,
-9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
EW_liftoneDoptimal_MLM_func(m=m, p=p, Xi=Xi, J=J, thetavec_matrix=bvec_bootstrap,
link = "continuation",reltol=1e-5, maxit=500, p00=rep(1/7,7), random=FALSE, nram=3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.