Nothing
#' function of EW liftone for multinomial logit model
#'
#' @param m number of design points
#' @param p number of parameters in the multinomial logit model
#' @param Xi model matrix
#' @param J number of response levels in the multinomial logit model
#' @param thetavec_matrix the matrix of the sampled parameter values of beta
#' @param link multinomial logit model link function name "baseline", "cumulative", "adjacent", or"continuation", default to be "continuation"
#' @param reltol relative tolerance for convergence, default to 1e-5
#' @param maxit the number of maximum iteration, default to 500
#' @param p00 specified initial approximate allocation, default to NULL, if NULL, will generate a random initial approximate allocation
#' @param random TRUE or FALSE, if TRUE then the function will run lift-one with additional "nram" number of random approximate allocation, default to be FALSE
#' @param nram when random == TRUE, the function will run lift-one nram number of initial proportion p00, default is 3
#'
#' @return p reported EW D-optimal approximate allocation
#' @return p0 the initial approximate allocation that derived the reported EW D-optimal design
#' @return Maximum the maximum of the determinant of the expected Fisher information matrix
#' @return Convergence TRUE or FALSE, whether the algorithm converges
#' @return itmax maximum iterations
#' @export
#'
#' @examples
#' m=7
#' p=5
#' J=3
#' link.temp = "continuation"
#' factor_x=c(80,100,120,140,160,180,200)
#' hfunc.temp = function(y){
#' matrix(data=c(1,y,y*y,0,0,0,0,0,1,y,0,0,0,0,0), nrow=3, ncol=5, byrow=TRUE)
#' }
#' Xi=rep(0,J*p*m); dim(Xi)=c(J,p,m)
#' for(i in 1:m) {
#' Xi[,,i]=hfunc.temp(factor_x[i])
#' }
#' bvec_bootstrap<-matrix(c(-0.2401, -1.9292, -2.7851, -1.614,-1.162,
#' -0.0535, -0.0274, -0.0096,-0.0291, -0.04,
#' 0.0004, 0.0003, 0.0002, 0.0003, 0.1,
#' -9.2154, -9.7576, -9.6818, -8.5139, -8.56),nrow=4,byrow=TRUE)
#'EW_liftoneDoptimal_MLM_func(m=m, p=p, Xi=Xi, J=J, thetavec_matrix=bvec_bootstrap,
#'link = "continuation",reltol=1e-5, maxit=500, p00=rep(1/7,7), random=FALSE, nram=3)
#'
#'
EW_liftoneDoptimal_MLM_func <- function(m, p, Xi, J, thetavec_matrix,link = "continuation", reltol=1e-5, maxit=500, p00=NULL, random=FALSE, nram=3) {
if(is.null(p00)){p00=stats::rexp(m); p00=p00/sum(p00);}
Fi <- rep(0, p*p*m); dim(Fi)=c(p,p,m)
nFi <- rep(0, p*p*m); dim(nFi)=c(p,p,m)
for(i in 1:m) {
Fi[,,i]=EW_Fi_MLM_func(Xi[, ,i], bvec_matrix=thetavec_matrix, link=link)$F_x
nFi[,,i]=p00[i]*Fi[,,i]
}
F=apply(nFi,c(1,2),sum)
Fdet=det(F)
Bn1 <- matrix(1, J-1, J-1) # B^{-1}
for(j in 2:(J-1)) Bn1[,j]=(1:(J-1))^(j-1);
Bn1 = solve(Bn1);
fdet <- function(p) { # |F|=|sum_i p_i F_i|, p[1:m], need "Fi"
atemp=p[1]*Fi[,,1];
for(i in 2:m) atemp=atemp+p[i]*Fi[,,i];
det(atemp);
}
fiz <- function(z, p, i) { # f_i(z), need "fdet"
p1=p*(1-z)/(1-p[i]);
p1[i]=z;
fdet(p1);
}
if(is.null(p00)) p00=p00; # default initial point is uniform design
maximum = fdet(p00);
maxvec = stats::rexp(m);
convergence = F;
p0 = p00;
ind = 0;
while((ind < maxit) && ((max(maxvec)/min(maxvec))-1 > reltol)&&is.finite(max(maxvec)) &&is.finite(min(maxvec))) {
io = sample(seq(1:m));
for(ia in 1:m) { # run updating in random order of {1,2,...,m}
avec <- rep(0, J); # a0, a1, ..., a_{J-1}
avec[1] = fiz(0, p0, io[ia]); # a0=f_i(0)
cvec <- rep(0, J-1); # c1, c2, ..., c_{J-1}
for(j in 1:(J-1)) cvec[j]=(j+1)^p*j^(J-1-p)*fiz(1/(j+1), p0, io[ia])-j^(J-1)*avec[1];
avec[J:2]=Bn1%*%cvec;
if(J<=5){
ftemp <- function(z) { # f_i(z)
obj=(1-z)^(p-J+1)*sum(avec*z^(0:(J-1))*(1-z)^((J-1):0));
# cat("\navec", avec, "\nz",z, "\nsum", sum(avec*z^(0:(J-1))*(1-z)^((J-1):0)),"\nobject",obj,"\n") #delete
return(obj)
}
if(J==3){
c0.temp <- avec[1]*p - avec[2]
c1.temp <- avec[2]*p+avec[2]-2*avec[1]*p-2*avec[3]
c2.temp <- avec[1]*p - avec[2]*p + avec[3]*p
sol.temp = polynomial_sol_J3(c0.temp, c1.temp, c2.temp) #return the two analytical solutions
}
if(J==4){
c0.temp <- avec[1]*p - avec[2]
c1.temp <- -3*avec[1]*p + 2*avec[2] + p*avec[2] - 2*avec[3]
c2.temp <- 3*avec[1]*p - (1+2*p)*avec[2] + (2+p)*avec[3] - 3*avec[4]
c3.temp <- p*(-avec[1] + avec[2] - avec[3] + avec[4])
sol.temp = polynomial_sol_J4(c0.temp, c1.temp, c2.temp, c3.temp) #return the three analytical solutions
}
if(J==5){
#define the coefficients of 4th order polynomial function
c0.temp = -avec[2]+avec[1]*p
c1.temp = 3*avec[2] - 2*avec[3] - 4*avec[1]*p + avec[2]*p
c2.temp = -3*avec[2] + 4*avec[3] - 3*avec[4] + 6*avec[1]*p - 3*avec[2]*p + avec[3]*p
c3.temp = avec[2] - 2*avec[3] + 3*avec[4] - 4*avec[5] -4*avec[1]*p + 3*avec[2]*p - 2*avec[3]*p + avec[4]*p
c4.temp =avec[1]*p - avec[2]*p + avec[3]*p - avec[4]*p + avec[5]*p
sol.temp = polynomial_sol_J5(c0.temp, c1.temp, c2.temp, c3.temp, c4.temp) #return the four analytical solutions
}
#remove the complex solution, only use real solution
sol.temp[abs(Im(sol.temp)) > 1e-6] = NA
sol.temp[Re(sol.temp) < 1e-6] = NA
sol.temp[Re(sol.temp) > (1-1e-6)] = NA
sol.temp = Re(stats::na.omit(sol.temp))
#all the four solutions are complex zstar=0 if not find the max ftemp
zstar=0; fstar=avec[1];
if(length(sol.temp)>0){
for(value in sol.temp){
ftemp.value = ftemp(value)
if(ftemp.value > fstar){zstar=value; fstar=ftemp.value}
}#for loop end
} #end if
}else{
ftemp <- function(z) { # -f_i(z)
obj=-(1-z)^(p-J+1)*sum(avec*z^(0:(J-1))*(1-z)^((J-1):0));
# cat("\navec", avec, "\nz",z, "\nsum", sum(avec*z^(0:(J-1))*(1-z)^((J-1):0)),"\nobject",obj,"\n") #delete
return(obj)
}
ftemp1 <- function(z) { # -f'_i(z)
# -(1-z)^(p-J)*sum(((1:(J-1))-P*z)*avec[2:J]*z^(0:(J-2))*(1-z)^((J-2):0))+p*avec[1]*(1-z)^(p-1);
-(1-z)^(p-J+1)*sum((1:(J-1))*avec[2:J]*z^(0:(J-2))*(1-z)^((J-2):0))+(1-z)^(p-J)*sum((p:(p-J+1))*avec[1:J]*z^(0:(J-1))*(1-z)^((J-1):0));
}
temp=stats::optim(par=0.5, fn=ftemp, gr=ftemp1, method="L-BFGS-B", lower=0, upper=1, control=list(maxit=maxit, factr=1e5));
zstar=temp$par; # z_*
fstar=-temp$value;
if(fstar <= avec[1]) {zstar=0; fstar=avec[1];};
}
ptemp1 = p0*(1-zstar)/(1-p0[io[ia]]);
ptemp1[io[ia]] = zstar;
if(fstar > maximum && is.finite(fstar)) {maximum = fstar; p0=ptemp1;};
maxvec[io[ia]] = maximum;
}
ind = ind+1;
#cat("\nmaxit", maxit, "\nmax(maxvec)", max(maxvec), "\nmin(maxvec)", min(maxvec)) #delete
}# end of "while"
p00.ans = p00;
p0.ans=p0;
maximum.ans=maximum;
#maximum.adj=maximum*n^p;
#fdet.adj=Fdet*n^p;
if((max(maxvec)/min(maxvec))-1 <= reltol) convergence=TRUE;
itmax=ind;
effi=(Fdet/maximum.ans)^(1/p)
#random initial weights
if(random){
for(j in 1:nram){
p00=stats::rexp(m)
p00=p00/sum(p00)
Fi <- rep(0, p*p*m); dim(Fi)=c(p,p,m)
nFi <- rep(0, p*p*m); dim(nFi)=c(p,p,m)
for(i in 1:m) {
Fi[,,i]=EW_Fi_MLM_func(Xi[, ,i], bvec_matrix=thetavec_matrix, link=link)$F_x
nFi[,,i]=p00[i]*Fi[,,i]
}
F=apply(nFi,c(1,2),sum)
Fdet=det(F)
Bn1 <- matrix(1, J-1, J-1) # B^{-1}
for(j in 2:(J-1)) Bn1[,j]=(1:(J-1))^(j-1);
Bn1 = solve(Bn1);
fdet <- function(p) { # |F|=|sum_i p_i F_i|, p[1:m], need "Fi"
atemp=p[1]*Fi[,,1];
for(i in 2:m) atemp=atemp+p[i]*Fi[,,i];
det(atemp);
}
fiz <- function(z, p, i) { # f_i(z), need "fdet"
p1=p*(1-z)/(1-p[i]);
p1[i]=z;
fdet(p1);
}
if(is.null(p00)) p00=p00; # default initial point is uniform design
maximum = fdet(p00);
maxvec = stats::rexp(m);
convergence = FALSE;
p0 = p00;
ind = 0;
while((ind < maxit) && ((max(maxvec)/min(maxvec))-1 > reltol)&&is.finite(max(maxvec)) &&is.finite(min(maxvec))) {
io = sample(seq(1:m));
for(ia in 1:m) { # run updating in random order of {1,2,...,m}
avec <- rep(0, J); # a0, a1, ..., a_{J-1}
avec[1] = fiz(0, p0, io[ia]); # a0=f_i(0)
cvec <- rep(0, J-1); # c1, c2, ..., c_{J-1}
for(j in 1:(J-1)) cvec[j]=(j+1)^p*j^(J-1-p)*fiz(1/(j+1), p0, io[ia])-j^(J-1)*avec[1];
avec[J:2]=Bn1%*%cvec;
if(J<=5){
ftemp <- function(z) { # f_i(z)
obj=(1-z)^(p-J+1)*sum(avec*z^(0:(J-1))*(1-z)^((J-1):0));
# cat("\navec", avec, "\nz",z, "\nsum", sum(avec*z^(0:(J-1))*(1-z)^((J-1):0)),"\nobject",obj,"\n") #delete
return(obj)
}
if(J==3){
c0.temp <- avec[1]*p - avec[2]
c1.temp <- avec[2]*p+avec[2]-2*avec[1]*p-2*avec[3]
c2.temp <- avec[1]*p - avec[2]*p + avec[3]*p
sol.temp = polynomial_sol_J3(c0.temp, c1.temp, c2.temp) #return the two analytical solutions
}
if(J==4){
c0.temp <- avec[1]*p - avec[2]
c1.temp <- -3*avec[1]*p + 2*avec[2] + p*avec[2] - 2*avec[3]
c2.temp <- 3*avec[1]*p - (1+2*p)*avec[2] + (2+p)*avec[3] - 3*avec[4]
c3.temp <- p*(-avec[1] + avec[2] - avec[3] + avec[4])
sol.temp = polynomial_sol_J4(c0.temp, c1.temp, c2.temp, c3.temp) #return the three analytical solutions
}
if(J==5){
#define the coefficients of 4th order polynomial function
c0.temp = -avec[2]+avec[1]*p
c1.temp = 3*avec[2] - 2*avec[3] - 4*avec[1]*p + avec[2]*p
c2.temp = -3*avec[2] + 4*avec[3] - 3*avec[4] + 6*avec[1]*p - 3*avec[2]*p + avec[3]*p
c3.temp = avec[2] - 2*avec[3] + 3*avec[4] - 4*avec[5] -4*avec[1]*p + 3*avec[2]*p - 2*avec[3]*p + avec[4]*p
c4.temp =avec[1]*p - avec[2]*p + avec[3]*p - avec[4]*p + avec[5]*p
sol.temp = polynomial_sol_J5(c0.temp, c1.temp, c2.temp, c3.temp, c4.temp) #return the four analytical solutions
}
#remove the complex solution, only use real solution
sol.temp[abs(Im(sol.temp)) > 1e-6] = NA
sol.temp[Re(sol.temp) < 1e-6] = NA
sol.temp[Re(sol.temp) > (1-1e-6)] = NA
sol.temp = Re(stats::na.omit(sol.temp))
#all the four solutions are complex zstar=0 if not find the max ftemp
zstar=0; fstar=avec[1];
if(length(sol.temp)>0){
for(value in sol.temp){
ftemp.value = ftemp(value)
if(ftemp.value > fstar){zstar=value; fstar=ftemp.value}
}#for loop end
} #end if
}else{
ftemp <- function(z) { # -f_i(z)
obj=-(1-z)^(p-J+1)*sum(avec*z^(0:(J-1))*(1-z)^((J-1):0));
# cat("\navec", avec, "\nz",z, "\nsum", sum(avec*z^(0:(J-1))*(1-z)^((J-1):0)),"\nobject",obj,"\n") #delete
return(obj)
}
ftemp1 <- function(z) { # -f'_i(z)
# -(1-z)^(p-J)*sum(((1:(J-1))-P*z)*avec[2:J]*z^(0:(J-2))*(1-z)^((J-2):0))+p*avec[1]*(1-z)^(p-1);
-(1-z)^(p-J+1)*sum((1:(J-1))*avec[2:J]*z^(0:(J-2))*(1-z)^((J-2):0))+(1-z)^(p-J)*sum((p:(p-J+1))*avec[1:J]*z^(0:(J-1))*(1-z)^((J-1):0));
}
temp=stats::optim(par=0.5, fn=ftemp, gr=ftemp1, method="L-BFGS-B", lower=0, upper=1, control=list(maxit=maxit, factr=1e5));
zstar=temp$par; # z_*
fstar=-temp$value;
if(fstar <= avec[1]) {zstar=0; fstar=avec[1];};
}
ptemp1 = p0*(1-zstar)/(1-p0[io[ia]]);
ptemp1[io[ia]] = zstar;
if(fstar > maximum && is.finite(fstar)) {maximum = fstar; p0=ptemp1;};
maxvec[io[ia]] = maximum;
}
ind = ind+1;
#cat("\nmaxit", maxit, "\nmax(maxvec)", max(maxvec), "\nmin(maxvec)", min(maxvec)) #delete
}# end of "while"
if(maximum > maximum.ans){
p00.ans = p00;
p0.ans=p0;
maximum.ans=maximum;
#maximum.adj=maximum*n^p;
#fdet.adj=Fdet*n^p;
if((max(maxvec)/min(maxvec))-1 <= reltol) convergence=TRUE;
itmax=ind;
#effi=(Fdet/maximum.ans)^(1/p)
}
}#end of for loop of 1:nram
}#end of if(random)
#list(p=p0.ans, p0=p00, Maximum=maximum.ans,convergence=convergence, itmax=itmax);
#define S3 class
output<-list(p=p0.ans, p0=p00, Maximum=maximum.ans, convergence=convergence, itmax=itmax);
class(output) <- "list_output"
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.