View source: R/GLM_Exact_Design.R
GLM_Exact_Design | R Documentation |
Approximation to exact design algorithm for generalized linear model
GLM_Exact_Design(
k.continuous,
design_x,
design_p,
det.design,
p,
ForLion,
bvec,
joint_Func_b,
Lowerbounds,
Upperbounds,
rel.diff,
L,
N,
hfunc,
link
)
k.continuous |
number of continuous factors |
design_x |
the matrix with rows indicating design point which we got from the approximate design |
design_p |
D-optimal approximate allocation |
det.design |
the determinant of D-optimal approximate allocation |
p |
number of parameters |
ForLion |
TRUE or FALSE, TRUE: this approximate design was generated by ForLion algorithm, FALSE: this approximate was generated by EW ForLion algorithm |
bvec |
assumed parameter values of model parameters beta, same length of h(y) |
joint_Func_b |
The prior joint probability distribution of the parameters |
Lowerbounds |
The lower limit of the prior distribution for each parameter |
Upperbounds |
The upper limit of the prior distribution for each parameter |
rel.diff |
points with distance less than that will be merged |
L |
rounding factor |
N |
total number of observations |
hfunc |
function for obtaining model matrix h(y) for given design point y, y has to follow the same order as n.factor |
link |
link function, default "logit", other links: "probit", "cloglog", "loglog", "cauchit", "log", "identity" |
x.design matrix with rows indicating design point
ni.design EW D-optimal or D-optimal exact allocation
rel.efficiency relative efficiency of the Exact and Approximate Designs
k.continuous=1
design_x=matrix(c(25, -1, -1,-1, -1 ,
25, -1, -1, -1, 1,
25, -1, -1, 1, -1,
25, -1, -1, 1, 1,
25, -1, 1, -1, -1,
25, -1, 1, -1, 1,
25, -1, 1, 1, -1,
25, -1, 1, 1, 1,
25, 1, -1, 1, -1,
25, 1, 1, -1, -1,
25, 1, 1, -1, 1,
25, 1, 1, 1, -1,
25, 1, 1, 1, 1,
38.9479, -1, 1, 1, -1,
34.0229, -1, 1, -1, -1,
35.4049, -1, 1, -1, 1,
37.1960, -1, -1, 1, -1,
33.0884, -1, 1, 1, 1),nrow=18,ncol=5,byrow = TRUE)
hfunc.temp = function(y) {c(y,y[4]*y[5],1);}; # y -> h(y)=(y1,y2,y3,y4,y5,y4*y5,1)
link.temp="logit"
design_p=c(0.0848, 0.0875, 0.0410, 0.0856, 0.0690, 0.0515,
0.0901, 0.0845, 0.0743, 0.0356, 0.0621, 0.0443,
0.0090, 0.0794, 0.0157, 0.0380, 0.0455, 0.0022)
det.design=4.552715e-06
paras_lowerbound<-c(0.25,1,-0.3,-0.3,0.1,0.35,-8.0)
paras_upperbound<-c(0.45,2,-0.1,0.0,0.4,0.45,-7.0)
gjoint_b<- function(x) {
Func_b<-1/(prod(paras_upperbound-paras_lowerbound))
##the prior distributions are follow uniform distribution
return(Func_b)
}
GLM_Exact_Design(k.continuous=k.continuous,design_x=design_x,
design_p=design_p,det.design=det.design,p=7,ForLion=FALSE,joint_Func_b=gjoint_b,
Lowerbounds=paras_lowerbound, Upperbounds=paras_upperbound,rel.diff=0,L=1,
N=100,hfunc=hfunc.temp,link=link.temp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.