Description Usage Arguments Value See Also Examples
View source: R/foreca.EM.one_weightvector.R
foreca.EM.one_weightvector finds the optimal weightvector \mathbf{w}^*
that gives the most forecastable signal y_t^* = \mathbf{U}_t \mathbf{w}^*
using an EM-like algorithm (see References).
1 2 3 4 5 6 7 8 9  | foreca.EM.one_weightvector(
  U,
  f.U = NULL,
  spectrum.control = list(),
  entropy.control = list(),
  algorithm.control = list(),
  init.weightvector = initialize_weightvector(num.series = ncol(U), method = "rnorm"),
  ...
)
 | 
U | 
 a T \times K array with   | 
f.U | 
 multivariate spectrum of class   | 
spectrum.control | 
 list; control settings for spectrum estimation. 
See   | 
entropy.control | 
 list; control settings for entropy estimation.
See   | 
algorithm.control | 
 list; control settings for any iterative ForeCA 
algorithm. See   | 
init.weightvector | 
 numeric; starting point \mathbf{w}_0 for several
iterative algorithms.  By default it uses a (normalized) random vector from a
standard Normal distribution (see   | 
... | 
 other arguments passed to   | 
A list with useful quantities like the optimal weighvector, the corresponding signal, and its forecastability.
foreca.one_weightvector, foreca.EM-aux
1 2 3 4 5 6 7  | ## Not run: 
XX <- diff(log(EuStockMarkets)[100:200,]) * 100
one.weight <- foreca.EM.one_weightvector(whiten(XX)$U,
                                         spectrum.control =
                                            list(method = "mvspec"))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.