auto_combine: Automated Forecast Combination

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/auto_combine.R

Description

Computes the fit for all the available forecast combination methods on the provided dataset with respect to the loss criterion. Returns the best fit method.

Usage

1
auto_combine(x, criterion = "RMSE", param_list = NULL)

Arguments

x

An object of class 'foreccomb'. Contains training set (actual values + matrix of model forecasts) and optionally a test set.

criterion

Specifies loss criterion. Set criterion to either 'RMSE' (default), 'MAE', or 'MAPE'.

param_list

Can contain additional parameters for the different combination methods (see example below).

Details

The function auto_combine allows to quickly apply all the different forecast combination methods onto the provided time series data and selects the method with the best fit.

The user can choose from 3 different loss criteria for the best-fit evaluation: root mean square error (criterion='RMSE'), mean absolute error (criterion='MAE'), and mean absolute percentage error (criterion='MAPE').

In case the user does not want to optimize over the parameters of some of the combination methods, auto_combine allows to specify the parameter values for these methods explicitly (see Examples).

The best-fit results are stored in an object of class 'foreccomb_res', for which separate plot and summary functions are provided.

Value

Returns an object of class foreccomb_res that represents the results for the best-fit forecast combination method:

Method

Returns the best-fit forecast combination method.

Models

Returns the individual input models that were used for the forecast combinations.

Weights

Returns the combination weights obtained by applying the best-fit combination method to the training set.

Fitted

Returns the fitted values of the combination method for the training set.

Accuracy_Train

Returns range of summary measures of the forecast accuracy for the training set.

Forecasts_Test

Returns forecasts produced by the combination method for the test set. Only returned if input included a forecast matrix for the test set.

Accuracy_Test

Returns range of summary measures of the forecast accuracy for the test set. Only returned if input included a forecast matrix and a vector of actual values for the test set.

Input_Data

Returns the data forwarded to the method.

Author(s)

Christoph E. Weiss and Gernot R. Roetzer

See Also

foreccomb, plot.foreccomb_res, summary.foreccomb_res, accuracy

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]

data<-foreccomb(train_o, train_p, test_o, test_p)

# Evaluating all the forecast combination methods and returning the best.
# If necessary, it uses the built-in automated parameter optimisation methods
# for the different methods.
best_combination<-auto_combine(data, criterion = "MAPE")

# Same as above, but now we restrict the parameter ntop_pred for the method comb_EIG3 to be 3.
param_list<-list()
param_list$comb_EIG3$ntop_pred<-3
best_combination_restricted<-auto_combine(data, criterion = "MAPE", param_list = param_list)

ForecastComb documentation built on May 1, 2019, 9:16 p.m.