djsb | R Documentation |
Computes the probability density function of the four-parameter JSB distibution given by
f\bigl(x\big|\Theta\bigr) = \frac {\delta \lambda}{\sqrt{2\pi}(x-\xi)(\lambda+\xi-x)}\exp\Biggl\{-\frac{1}{2}\Bigg[\gamma+\delta\log \biggl(\frac{x-\xi}{\lambda+\xi-x}\biggr) \Bigg]^2\Biggr\},
where \xi<x<\lambda+\xi
, \Theta=(\delta,\gamma,\lambda,\xi)^T
with \delta, \lambda> 0
, -\infty<\gamma<\infty
, and -\infty<\xi<\infty
.
djsb(data, param, log = FALSE)
data |
Vector of observations. |
param |
Vector of the parameters |
log |
If |
A vector of length n
, giving the density function of JSB distribution.
Mahdi Teimouri
delta <- 1
gamma <- 3
lambda <- 12
xi <- 5
param <- c(delta, gamma, lambda, xi)
data <- rjsb(20, param)
djsb(data, param, log = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.