| pjsb | R Documentation | 
Computes the cumulative distribution function of the four-parameter JSB distibution given by
F\bigl(x\big|\Theta\bigr) = \int_{\xi}^{x}\frac {\delta \lambda}{\sqrt{2\pi}(u-\xi)(\lambda+\xi-u)}\exp\Biggl\{-\frac{1}{2}\Bigg[\gamma+\delta\log \biggl(\frac{u-\xi}{\lambda+\xi-u}\biggr) \Bigg]^2\Biggr\} du,
where \xi<x<\lambda+\xi, \Theta=(\delta,\gamma,\lambda,\xi)^T with \delta, \lambda> 0, -\infty<\gamma<\infty, and -\infty<\xi<\infty.
pjsb(data, param, log.p = FALSE, lower.tail = TRUE)
data | 
 Vector of observations.  | 
param | 
 Vector of the  parameters   | 
log.p | 
 If   | 
lower.tail | 
 If   | 
A vector of length n, giving random generated values from JSB distribution.
Mahdi Teimouri
data<-rnorm(10)
param<-c(delta<-1, gamma<-3, lambda<-12, xi<-5)
pjsb(data, param, log.p = FALSE, lower.tail = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.