djsbb | R Documentation |
Computes the probability density function of the 9-parameter JSBB distibution given by
f_{Y_{1},Y_{2}}\bigl(y_1,y_2\big \vert\Theta\bigr) = f_{Y_1, Y_2}(y_1, y_2) =\frac{\delta_1\delta_2\lambda_1\lambda_2\exp\Bigl\{\frac{-z^{2}_{1}-z^{2}_{2} +2\rho z_{1}z_{2}}{2(1-\rho^2)}\Bigr\}}{2\pi \sqrt{1-\rho^2}\bigl(y_1-\xi_1\bigr)\bigl(y_2-\xi_2\bigr)\bigl(\lambda_1+\xi_1-y_1\bigr)\bigl(\lambda_2+\xi_2-y_2\bigr)},
where
z_{i}=\delta_i \log \Bigl(\frac{y_{i}-{\xi}_i}{{\xi}_i+{\lambda}_i-y_{i}}\Bigr)+\gamma_{i},
for i=1,2
. The parameter space of SBB distribution is \Theta=({\bf{\delta}},{\bf{\gamma}},{\bf{\lambda}},{\bf{\xi}}, \rho)^{\top}
in which {\bf{\delta}}=(\delta_1,\delta_2)^{\top}
, {\bf{\gamma}}=(\gamma_1,\gamma_2, \rho)^{\top}
, {\bf{\lambda}}=(\lambda_1,\lambda_2)^{\top}
, and {\bf{\xi}}=(\xi_1,\xi_2)^{\top}
. The supports of marginals are \xi_1<y_1<\lambda_1+\xi_1
and \xi_2<y_2<\lambda_2+\xi_2
.
The support of the parameter space is \delta_1>0,\delta_2>0,-\infty<\gamma_1<+\infty,-\infty<\gamma_2<+\infty, \lambda_1>0,\lambda_2>0, -\infty<\xi_1<+\infty, -\infty<\xi_2<+\infty
and -1<\rho<+1
.
djsbb(data, param, log = FALSE)
data |
Vector of observations. |
param |
Vector of the parameters |
log |
If |
A vector of length n
, giving the density function of JSBB distribution.
Mahdi Teimouri
Delta <- c(2.5, 3)
Gamma <- c(2, 1)
Lambda <- c(1, 3)
Xi <- c(0, 2)
rho <- -0.5
param <- c(Delta[1], Gamma[1], Lambda[1], Xi[1], Delta[2], Gamma[2], Lambda[2], Xi[2], rho)
data <- rjsbb(20, param)
djsbb(data, param, log = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.