Nothing
# function to calculate number of non-FNs for each variable
NumberOfNonFNs <- function(inputMatrix,trapezoidal)
{
# number of all variables
parameterTrapezoidal <- ifelse(trapezoidal,4,3)
varNumber <- ncol(inputMatrix) / parameterTrapezoidal
# cat("varNumber: ", varNumber, "\n")
# output vector
output <- rep(NA,times=varNumber+1)
names(output) <- c(noquote(paste("V", 1:varNumber, sep="")),"mean")
# cat("output: ", output, "\n")
# for loop for all variables
for (i in 1:varNumber) {
# cat("i: ", i, "\n")
# find the right range for each variable
rangeToCheck <- c((parameterTrapezoidal*(i-1)+1):(parameterTrapezoidal*i))
# cat("rangeToCheck: ", rangeToCheck, "\n")
# select only this variable for calculation of non-FNs
outputSingleVar <- which(apply(inputMatrix[,rangeToCheck], MARGIN=1, FUN=IsFuzzy, trapezoidal=trapezoidal) == FALSE)
# number of these non-FNs
outputSingleVar <- length(outputSingleVar)
# input to the output vector
output[i] <- outputSingleVar
}
output["mean"] <- mean(output[c(1:varNumber)])
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.