Nothing
# Fuzzy supplementary poverty estimation
#
# @description Step 2. It calculates deprivation score
# @param item A factor or numeric vector representing answers to an item (a column of data) that has to be rescaled. it will be converted to an ordered factor.
# @param weight A vector of sampling weights. If it is NULL (the default) weights are assigned assuming simple random sampling of units.
# @param ID A vector of length `nrow(data)` containing individuals IDs. if NULL (the default) row numbers will be used.
# @param ... other parameters
#
# @import dplyr
# @return The item rescaled according to Betti et. al 2018.
#
#
# @references
# # Betti, G., Gagliardi, F., & Verma, V. (2018). Simplified Jackknife variance estimates for fuzzy measures of multidimensional poverty. International Statistical Review, 86(1), 68-86.
fuzzyScaleItem = function(item, weight, ID, ...){
ordered_item = factor(item, ordered = T)
weight_sum = sum(weight)
# compute weights
outW <- data.frame(ID = 1:length(ordered_item), # ID riga
ordered_item,
weight = weight) %>%
dplyr::arrange(ordered_item) %>%
dplyr::group_by(ordered_item) %>%
dplyr::mutate(f = sum(weight)/weight_sum) # per ogni livello di item sommo i pesi e divido per la somma dei pesi
tmp <- unique(data.frame(ordered_item = outW$ordered_item,
f = outW$f))
tmp <- data.frame(tmp, F_cum = cumsum(tmp$f))
# join weights with individual information
outW2 = outW %>%
dplyr::inner_join(tmp %>% select(ordered_item, F_cum), by = c("ordered_item" = "ordered_item")) %>%
dplyr::ungroup() %>%
dplyr::mutate(s = round((1 - F_cum) / (1 - min(F_cum)),5), # changed to ensure comparability with betti due to R factor coding
d = 1 - s,
Item = item) %>%
# filter(item != Weight) %>% # PERCHé QUESTO PASSAGGIO?
dplyr::arrange(ID) %>% dplyr::select(ID,
Item,
Item_level = ordered_item,
F_cum, # POSSO ANCHE OMETTERE
d,s )
return(outW2)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.