Description Usage Arguments Value References Examples
View source: R/gp_diagnostics.R
This function computes standardized and pivoted-Cholesky residuals of a Gaussian process (GP) model on a validation data set. Mahalanobis distance and Mahalanobis p-value are calculated. These statistics provide evidence of lack-of-fit in the GP model. The residuals can be plotted against predicted values as well as QQ-plots to check the normality assumption.
1 | gp_residuals(design, response, model, plot = TRUE, type = "SK")
|
design |
A matrix of |
response |
A column vector of length |
model |
A GP model of class |
plot |
Plot residuals and QQ-plots (with outliers are highlighted)? |
type |
Kriging type: Simple Kriging "SK" or Universal Kriging "UK". |
A list including the Mahalanobis distance (MD), MD F-statistic, MD p-value, pivoted-Cholesky residuals, and standardized residuals.
Bastos, L. S., & O'Hagan, A. (2009). Diagnostics for gaussian process emulators. Technometrics, 51(4), 425–438, <doi:10.1198/TECH.2009.08019>.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #--- Simple iid Normal Example ---#
#model assumputions hold
set.seed(123)
# training data
x <- matrix(runif(20,-1.5,1.5),ncol=1)
y <- matrix(rnorm(20),ncol = 1)
my_model <- DiceKriging::km(formula=~1,
design=x,
response=y,
covtype='matern5_2',
optim.method='BFGS',
nugget.estim=TRUE)
# validation data
v_x <- matrix(runif(25,-1,1),ncol=1)
v_y <- matrix(rnorm(25),ncol = 1)
diagnostics <-gp_residuals(design = v_x, response = v_y,my_model)
#--- Bastos and O'Hagan (2009) Two-input Toy Model ---#
# needs more than 20 training points
set.seed(123)
# training data
x <- lhs::randomLHS(20,2)
y <- space_eval(x,bo09_toy)
# validation data
v_x <- lhs::randomLHS(25,2)
v_y <- space_eval(v_x,bo09_toy)
my_model <- DiceKriging::km(formula=~1,
design=x,
response=y,
covtype='matern5_2',
optim.method='BFGS',
nugget.estim=TRUE)
diagnostics <- gp_residuals(v_x,v_y,my_model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.