Nothing
# Load the survey package
library(survey)
setwd("C:/Users/User/Box/Data/KHP2.2_sas")
a_hh = read.csv("a_hh.csv")
a_hh$REGION1 <- as.factor(a_hh$REGION1)
a_hh$REGION2 <- as.factor(a_hh$REGION2)
a_hh <- a_hh[!is.na(a_hh$REGION1), ] # Maybe it has to be removed
# table(a_hh$REGION1, a_hh$REGION2, useNA ="always")
# Assuming your data frame is named `a_hh`
# Define the survey design object
survey_design <- svydesign(
id = ~1, # Assuming no clustering (if there's a cluster variable, replace ~1 with ~cluster_variable)
strata = ~REGION1 + REGION2, # Specify the strata variables
weights = ~H_WGC, # Specify the weight variable
data = a_hh # Specify the dataset
)
# Calculate the mean for the variable OTC_MED
survey_means <- svymean(~OTC_MED, design = survey_design)
# Display the results
print(survey_means)
survey_freq <- svytable(~HEXP1, design = survey_design)
survey_freq
# Compute the weighted totals and their standard errors for HEXP1
weighted_totals <- svytotal(~as.factor(HEXP1), design = survey_design, vartype = c("se"))
a_ind = read.csv("a_ind.csv")
library(dplyr)
a_ind <- left_join(a_ind, a_hh %>% select(HHID, REGION2), by = join_by(HHID))
# a_ind <- subset(a_ind, I_INC1 != 0) # To be removed
# a_ind <- a_ind[!is.na(a_ind$REGION1), ] # To be removed
# tmptable = tapply(a_ind$I_WGC, a_ind %>% select(REGION1), sum) / tapply(a_ind$I_WGC, a_ind %>% select(REGION1), length)
# table(a_ind %>% select(REGION1, REGION2), useNA = "always")
# Define the survey design object
survey_design <- svydesign(
id = ~1, # Assuming no clustering
# strata = ~REGION1,
# strata = ~REGION1 + REGION2, # Strata variables
weights = ~I_WGC, # Weight variable
# data = a_ind
data = subset(a_ind, I_INC1 != 0) # Filtered dataset
)
# svymean(~I_INC1, design = survey_design, vartype = c("se"))
# svytotal(~I_INC1, design = survey_design, vartype = c("se"))
# Compute the mean for I_INC1
mean_income <- svymean(~I_INC1, design = survey_design, vartype = c("se"))
# Display the results
print(mean_income)
# table(a_ind$HS1, useNA = "always")
table(a_ind$REGION1, a_ind$REGION2)
sum(is.na(a_ind$I_WGC))
a_ind$I_WGC[a_ind$REGION1[!is.na(a_ind$REGION1)] == 11]
survey_design <- svydesign(
id = ~1, # Assuming no clustering
strata = ~REGION1 + REGION2, # Strata variables
weights = ~I_WGC, # Weight variable
data = a_ind[!is.na(a_ind$REGION1) & !is.na(a_ind$HS1), ]
# data = a_ind[!is.na(a_ind$REGION1), ]
)
# Compute weighted frequencies for HS1
weighted_frequencies <- svytotal(~as.factor(HS1), design = survey_design,
na.rm=T)
weighted_frequencies
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.