Description Usage Arguments Details Value References See Also Examples
View source: R/MLE.GFGM.BurrIII.R
Maximum likelihood estimation for bivariate dependent competing risks data under the generalized FGM copula with the Burr III margins.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | MLE.GFGM.BurrIII(
t.event,
event1,
event2,
D,
p,
q,
theta,
eta = 0,
Gamma.0 = 1,
epsilon.0 = 1e-05,
epsilon.1 = 1e-10,
epsilon.2 = 1e-300,
r.1 = 1,
r.2 = 1,
r.3 = 1
)
|
t.event |
Vector of the observed failure times. |
event1 |
Vector of the indicators for the failure cause 1. |
event2 |
Vector of the indicators for the failure cause 2. |
D |
Positive tunning parameter in the NR algorithm. |
p |
Copula parameter that greater than or equal to 1. |
q |
Copula parameter that greater than 1 (integer). |
theta |
Copula parameter with restricted range. |
eta |
Location parameter with default value 0. |
Gamma.0 |
Initial guess for the common shape parameter gamma with default value 1. |
epsilon.0 |
Positive tunning parameter in the NR algorithm with default value 1e-5. |
epsilon.1 |
Positive tunning parameter in the NR algorithm with default value 1e-10. |
epsilon.2 |
Positive tunning parameter in the NR algorithm with default value 1e-300. |
r.1 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.2 |
Positive tunning parameter in the NR algorithm with default value 1. |
r.3 |
Positive tunning parameter in the NR algorithm with default value 1. |
The copula parameter q
is restricted to be a integer due to the binominal theorem.
The admissible range of theta
is given in Dependence.GFGM
.
n |
Sample size. |
count |
Iteration number. |
random |
Randomization number. |
Alpha |
Positive shape parameter for the Burr III margin (failure cause 1). |
Beta |
Positive shape parameter for the Burr III margin (failure cause 2). |
Gamma |
Common shape parameter for the Burr III margins. |
MeanX |
Mean lifetime due to failure cause 1. |
MeanY |
Mean lifetime due to failure cause 2. |
logL |
Log-likelihood value under the fitted model. |
Shih J-H, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks udner the generalized FGM copula, Computational Statistics, 33:1293-1323.
Shih J-H, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60:1101-1118.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | con = c(16,224,16,80,128,168,144,176,176,568,392,576,128,56,112,160,384,600,40,416,
408,384,256,246,184,440,64,104,168,408,304,16,72,8,88,160,48,168,80,512,
208,194,136,224,32,504,40,120,320,48,256,216,168,184,144,224,488,304,40,160,
488,120,208,32,112,288,336,256,40,296,60,208,440,104,528,384,264,360,80,96,
360,232,40,112,120,32,56,280,104,168,56,72,64,40,480,152,48,56,328,192,
168,168,114,280,128,416,392,160,144,208,96,536,400,80,40,112,160,104,224,336,
616,224,40,32,192,126,392,288,248,120,328,464,448,616,168,112,448,296,328,56,
80,72,56,608,144,408,16,560,144,612,80,16,424,264,256,528,56,256,112,544,
552,72,184,240,128,40,600,96,24,184,272,152,328,480,96,296,592,400,8,280,
72,168,40,152,488,480,40,576,392,552,112,288,168,352,160,272,320,80,296,248,
184,264,96,224,592,176,256,344,360,184,152,208,160,176,72,584,144,176)
uncon = c(368,136,512,136,472,96,144,112,104,104,344,246,72,80,312,24,128,304,16,320,
560,168,120,616,24,176,16,24,32,232,32,112,56,184,40,256,160,456,48,24,
200,72,168,288,112,80,584,368,272,208,144,208,114,480,114,392,120,48,104,272,
64,112,96,64,360,136,168,176,256,112,104,272,320,8,440,224,280,8,56,216,
120,256,104,104,8,304,240,88,248,472,304,88,200,392,168,72,40,88,176,216,
152,184,400,424,88,152,184)
cen = rep(630,44)
t.event = c(con,uncon,cen)
event1 = c(rep(1,length(con)),rep(0,length(uncon)),rep(0,length(cen)))
event2 = c(rep(0,length(con)),rep(1,length(uncon)),rep(0,length(cen)))
library(GFGM.copula)
MLE.GFGM.BurrIII(t.event,event1,event2,5000,3,2,0.75,eta = -71)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.