fun.bimodal.fit.ml | R Documentation |
This is the secondary optimization procedure to evaluate the final bimodal
distribution fits using the maximum likelihood. It usually relies on initial
values found by fun.bimodal.init
function.
fun.bimodal.fit.ml(data, first.fit, second.fit, prop, param1, param2, selc1,
selc2)
data |
Dataset to be fitted. |
first.fit |
The distribution parameters or the initial values of the first distribution fit. |
second.fit |
The distribution parameters or the initial values of the second distribution fit. |
prop |
The proportion of the data set, usually obtained from
|
param1 |
Can be either |
param2 |
Can be either |
selc1 |
Selection of initial values for the first distribution, can be
either |
selc2 |
Selection of initial values for the second distribution, can be
either |
This function should be used in tandem with fun.bimodal.init
.
par |
The first four numbers are the parameters of the first generalised lambda distribution, the second four numbers are the parameters of the second generalised lambda distribution and the last value is the proportion of the first generalised lambda distribution. |
value |
The objective value of negative likelihood obtained using the par above. |
counts |
A two-element integer vector giving the number of calls to functions. Gradient is not used in this case. |
convergence |
An integer code.
|
message |
A character string giving any additional information returned
by the optimizer, or |
There is currently no guarantee of a global convergence.
Steve Su
Su (2007). Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R. Journal of Statistical Software: *21* 9.
link{fun.bimodal.fit.pml}
, fun.bimodal.init
# Extract faithful[,2] into faithful2
faithful2<-faithful[,2]
# Uses clara clustering method
clara.faithful2<-fun.class.regime.bi(faithful2, 0.01, clara)
# Save into two different objects
qqqq1.faithful2.cc<-clara.faithful2$data.a
qqqq2.faithful2.cc<-clara.faithful2$data.b
# Find the initial values
result.faithful2.init<-fun.bimodal.init(data1=qqqq1.faithful2.cc,
data2=qqqq2.faithful2.cc, rs.leap1=3,fmkl.leap1=3,rs.init1 = c(-1.5, 1.5),
fmkl.init1 = c(-0.25, 1.5), rs.leap2=3,fmkl.leap2=3,rs.init2 = c(-1.5, 1.5),
fmkl.init2 = c(-0.25, 1.5))
# Find the final fits
result.faithful2.rsrs<-fun.bimodal.fit.ml(data=faithful2,
result.faithful2.init[[2]],result.faithful2.init[[3]],
result.faithful2.init[[1]], param1="rs",param2="rs",selc1="rs",selc2="rs")
# Output
result.faithful2.rsrs
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.