fun.bimodal.init | R Documentation |
After classifying the data using fun.class.regime.bi
, this
function evaluates the temporary or initial solutions
by estimating each part of the bimodal distribution using the maximum likelihood
estimation and starship method.
These initial solutions are then passed onto fun.bimodal.fit.ml
or
fun.bimodal.fit.pml
to obtain the final fits.
fun.bimodal.init(data1, data2, rs.leap1, fmkl.leap1, rs.init1, fmkl.init1,
rs.leap2, fmkl.leap2, rs.init2, fmkl.init2,fun1="runif.sobol",
fun2="runif.sobol",no=10000)
data1 |
The first data obtained by the clustering algorithm. |
data2 |
The second data obtained by the clustering algorithm. |
rs.leap1 |
See scrambling argument in |
fmkl.leap1 |
See scrambling argument in |
rs.init1 |
Inititial values (lambda3 and lambda4) for the first RS
generalised lambda distribution. |
fmkl.init1 |
Inititial values (lambda3 and lambda4) for the first FMKL
generalised lambda distribution. |
rs.leap2 |
See scrambling argument in |
fmkl.leap2 |
See scrambling argument in |
rs.init2 |
Inititial values (lambda3 and lambda4) for the second RS
generalised lambda distribution. |
fmkl.init2 |
Inititial values (lambda3 and lambda4) for the second FMKL
generalised lambda distribution. |
fun1 |
A character string of either |
fun2 |
A character string of either |
no |
Number of initial random values to find the best initial values for optimisation. |
All three methods of fitting (RPRS, RMFMKL and STAR) will be given for each part of the bimodal distribution.
prop |
Proportion of the number of observations in the first data in relation to the entire data. |
first.fit |
A matrix comprising the parameters of GLD obtained from RPRS, RMFMKL and STAR for the first dataset. |
second.fit |
A matrix comprising the parameters of GLD obtained from RPRS, RMFMKL and STAR for the second dataset. |
This is not designed to be called by the end user explicitly, the difficulties with RPRS parameterisation should be noted by the users.
Steve Su
Su (2007). Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R. Journal of Statistical Software: *21* 9.
fun.class.regime.bi
,fun.bimodal.fit.pml
,
fun.bimodal.fit.ml
# Split the first column of the faithful data into two using
fun.class.regime.bi
faithful1.mod<-fun.class.regime.bi(faithful[,1], 0.1, clara)
# Save the datasets
qqqq1.faithful1.cc1<-faithful1.mod$data.a
qqqq2.faithful1.cc1<-faithful1.mod$data.b
# Find the initial values for secondary optimisation.
result.faithful1.init1<-fun.bimodal.init(data1=qqqq1.faithful1.cc1,
data2=qqqq2.faithful1.cc1, rs.leap1=3,fmkl.leap1=3,rs.init1 = c(-1.5, 1.5),
fmkl.init1 = c(-0.25, 1.5), rs.leap2=3,fmkl.leap2=3,rs.init2 = c(-1.5, 1.5),
fmkl.init2 = c(-0.25, 1.5))
# These initial values are then passed onto fun,bimodal.fit.ml to obtain the
# final fits.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.