| PowerExp | R Documentation |
Power Exponential Kernel R6 class
Power Exponential Kernel R6 class
k_PowerExp(
alpha = 1.95,
beta,
s2 = 1,
D,
beta_lower = -8,
beta_upper = 6,
beta_est = TRUE,
alpha_lower = 1e-08,
alpha_upper = 2,
alpha_est = TRUE,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
useC = TRUE
)
alpha |
Initial alpha value (the exponent). Between 0 and 2. |
beta |
Initial beta value |
s2 |
Initial variance |
D |
Number of input dimensions of data |
beta_lower |
Lower bound for beta |
beta_upper |
Upper bound for beta |
beta_est |
Should beta be estimated? |
alpha_lower |
Lower bound for alpha |
alpha_upper |
Upper bound for alpha |
alpha_est |
Should alpha be estimated? |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
useC |
Should C code used? Much faster if implemented. |
R6Class object.
Object of R6Class with methods for fitting GP model.
GauPro::GauPro_kernel -> GauPro::GauPro_kernel_beta -> GauPro_kernel_PowerExp
alphaalpha value (the exponent). Between 0 and 2.
alpha_lowerLower bound for alpha
alpha_upperUpper bound for alpha
alpha_estShould alpha be estimated?
new()Initialize kernel object
PowerExp$new( alpha = 1.95, beta, s2 = 1, D, beta_lower = -8, beta_upper = 6, beta_est = TRUE, alpha_lower = 1e-08, alpha_upper = 2, alpha_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
alphaInitial alpha value (the exponent). Between 0 and 2.
betaInitial beta value
s2Initial variance
DNumber of input dimensions of data
beta_lowerLower bound for beta
beta_upperUpper bound for beta
beta_estShould beta be estimated?
alpha_lowerLower bound for alpha
alpha_upperUpper bound for alpha
alpha_estShould alpha be estimated?
s2_lowerLower bound for s2
s2_upperUpper bound for s2
s2_estShould s2 be estimated?
useCShould C code used? Much faster if implemented.
k()Calculate covariance between two points
PowerExp$k( x, y = NULL, beta = self$beta, alpha = self$alpha, s2 = self$s2, params = NULL )
xvector.
yvector, optional. If excluded, find correlation of x with itself.
betaCorrelation parameters.
alphaalpha value (the exponent). Between 0 and 2.
s2Variance parameter.
paramsparameters to use instead of beta and s2.
kone()Find covariance of two points
PowerExp$kone(x, y, beta, theta, alpha, s2)
xvector
yvector
betacorrelation parameters on log scale
thetacorrelation parameters on regular scale
alphaalpha value (the exponent). Between 0 and 2.
s2Variance parameter
dC_dparams()Derivative of covariance with respect to parameters
PowerExp$dC_dparams(params = NULL, X, C_nonug, C, nug)
paramsKernel parameters
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
CCovariance with nugget
nugValue of nugget
dC_dx()Derivative of covariance with respect to X
PowerExp$dC_dx( XX, X, theta, beta = self$beta, alpha = self$alpha, s2 = self$s2 )
XXmatrix of points
Xmatrix of points to take derivative with respect to
thetaCorrelation parameters
betalog of theta
alphaalpha value (the exponent). Between 0 and 2.
s2Variance parameter
param_optim_start()Starting point for parameters for optimization
PowerExp$param_optim_start( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_start0()Starting point for parameters for optimization
PowerExp$param_optim_start0( jitter = F, y, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
jitterShould there be a jitter?
yOutput
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_lower()Lower bounds of parameters for optimization
PowerExp$param_optim_lower( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
param_optim_upper()Upper bounds of parameters for optimization
PowerExp$param_optim_upper( beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
beta_estIs beta being estimated?
alpha_estIs alpha being estimated?
s2_estIs s2 being estimated?
set_params_from_optim()Set parameters from optimization output
PowerExp$set_params_from_optim( optim_out, beta_est = self$beta_est, alpha_est = self$alpha_est, s2_est = self$s2_est )
optim_outOutput from optimization
beta_estIs beta estimate?
alpha_estIs alpha estimated?
s2_estIs s2 estimated?
print()Print this object
PowerExp$print()
clone()The objects of this class are cloneable with this method.
PowerExp$clone(deep = FALSE)
deepWhether to make a deep clone.
k1 <- PowerExp$new(beta=0, alpha=0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.