| trend_LM | R Documentation |
Trend R6 class
Trend R6 class
R6Class object.
Object of R6Class with methods for fitting GP model.
GauPro::GauPro_trend -> GauPro_trend_LM
mTrend parameters
m_lowerm lower bound
m_upperm upper bound
m_estShould m be estimated?
btrend parameter
b_lowertrend lower bounds
b_uppertrend upper bounds
b_estShould b be estimated?
new()Initialize trend object
trend_LM$new( D, m = rep(0, D), m_lower = rep(-Inf, D), m_upper = rep(Inf, D), m_est = rep(TRUE, D), b = 0, b_lower = -Inf, b_upper = Inf, b_est = TRUE )
DNumber of input dimensions of data
mtrend initial parameters
m_lowertrend lower bounds
m_uppertrend upper bounds
m_estLogical of whether each param should be estimated
btrend parameter
b_lowertrend lower bounds
b_uppertrend upper bounds
b_estShould b be estimated?
Z()Get trend value for given matrix X
trend_LM$Z(X, m = self$m, b = self$b, params = NULL)
Xmatrix of points
mtrend parameters
btrend parameters (slopes)
paramstrend parameters
dZ_dparams()Derivative of trend with respect to trend parameters
trend_LM$dZ_dparams(X, m = self$m_est, b = self$b_est, params = NULL)
Xmatrix of points
mtrend values
btrend intercept
paramsoverrides m
dZ_dx()Derivative of trend with respect to X
trend_LM$dZ_dx(X, m = self$m, params = NULL)
Xmatrix of points
mtrend values
paramsoverrides m
param_optim_start()Get parameter initial point for optimization
trend_LM$param_optim_start( jitter = FALSE, b_est = self$b_est, m_est = self$m_est )
jitterNot used
b_estIf the mean should be estimated.
m_estIf the linear terms should be estimated.
param_optim_start0()Get parameter initial point for optimization
trend_LM$param_optim_start0( jitter = FALSE, b_est = self$b_est, m_est = self$m_est )
jitterNot used
b_estIf the mean should be estimated.
m_estIf the linear terms should be estimated.
param_optim_lower()Get parameter lower bounds for optimization
trend_LM$param_optim_lower(b_est = self$b_est, m_est = self$m_est)
b_estIf the mean should be estimated.
m_estIf the linear terms should be estimated.
param_optim_upper()Get parameter upper bounds for optimization
trend_LM$param_optim_upper(b_est = self$b_est, m_est = self$m_est)
b_estIf the mean should be estimated.
m_estIf the linear terms should be estimated.
set_params_from_optim()Set parameters after optimization
trend_LM$set_params_from_optim(optim_out)
optim_outOutput from optim
clone()The objects of this class are cloneable with this method.
trend_LM$clone(deep = FALSE)
deepWhether to make a deep clone.
t1 <- trend_LM$new(D=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.