| trend_c | R Documentation | 
Trend R6 class
Trend R6 class
R6Class object.
Object of R6Class with methods for fitting GP model.
GauPro::GauPro_trend -> GauPro_trend_c
mTrend parameters
m_lowerm lower bound
m_upperm upper bound
m_estShould m be estimated?
new()Initialize trend object
trend_c$new(m = 0, m_lower = -Inf, m_upper = Inf, m_est = TRUE, D = NA)
mtrend initial parameters
m_lowertrend lower bounds
m_uppertrend upper bounds
m_estLogical of whether each param should be estimated
DNumber of input dimensions of data
Z()Get trend value for given matrix X
trend_c$Z(X, m = self$m, params = NULL)
Xmatrix of points
mtrend parameters
paramstrend parameters
dZ_dparams()Derivative of trend with respect to trend parameters
trend_c$dZ_dparams(X, m = self$m, params = NULL)
Xmatrix of points
mtrend values
paramsoverrides m
dZ_dx()Derivative of trend with respect to X
trend_c$dZ_dx(X, m = self$m, params = NULL)
Xmatrix of points
mtrend values
paramsoverrides m
param_optim_start()Get parameter initial point for optimization
trend_c$param_optim_start(jitter = F, m_est = self$m_est)
jitterNot used
m_estIf the trend should be estimate.
param_optim_start0()Get parameter initial point for optimization
trend_c$param_optim_start0(jitter = F, m_est = self$m_est)
jitterNot used
m_estIf the trend should be estimate.
param_optim_lower()Get parameter lower bounds for optimization
trend_c$param_optim_lower(m_est = self$m_est)
m_estIf the trend should be estimate.
param_optim_upper()Get parameter upper bounds for optimization
trend_c$param_optim_upper(m_est = self$m_est)
m_estIf the trend should be estimate.
set_params_from_optim()Set parameters after optimization
trend_c$set_params_from_optim(optim_out)
optim_outOutput from optim
clone()The objects of this class are cloneable with this method.
trend_c$clone(deep = FALSE)
deepWhether to make a deep clone.
t1 <- trend_c$new()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.