Description Usage Arguments Value Author(s) Examples
This function estimates the genomic controls for different models and degrees of freedom, using polinomial function. Polinomial coefficients are estimated by optimizing different error functions: regress, median, ks.test or group regress.
1 2 3 4 |
data |
Input vector of Chi square statistic |
method |
Function of error to be optimized. Can be "regress", "median", "ks.test" or "group_regress" |
p |
Input vector of allele frequencies |
df |
Number of degrees of freedom |
pol.d |
The degree of polinomial function |
plot |
If TRUE, plot of lambda will be produced |
start.corr |
For regress method use it only when you want to make calculations faster |
index.filter |
Index of variables in data vector, that will be used in analysis if zero - all variables will be used |
proportion |
The proportion of lowest P (Chi2) to be used when estimating the inflation factor Lambda for "regress" method only |
n_quiantile |
The number of groups for "group_regress" method |
title_name |
The title name for plot |
type_of_plot |
For developers only |
lmax |
The threshold for lambda for plotting (optional) |
color |
The color of the plot |
A list with elements
data |
Output vector corrected Chi square statistic |
b |
Polinomial coefficients |
Yakov Tsepilov
1 2 3 4 5 6 7 8 | require(GenABEL.data)
data(ge03d2)
ge03d2 <- ge03d2[seq(from=1,to=nids(ge03d2),by=2),seq(from=1,to=nsnps(ge03d2),by=3)]
qts <- mlreg(dm2~1,data=ge03d2,gtmode = "additive")
chi2.1df <- results(qts)$chi2.1df
s <- summary(ge03d2)
freq <- s$Q.2
result=PGC(data=chi2.1df,method="median",p=freq,df=1, pol.d=2, plot=TRUE, lmax=1.1,start.corr=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.