GeneralizedHyperbolic | R Documentation |
This package provides a collection of functions for working with the generalized hyperbolic and related distributions.
For the hyperbolic distribution functions are provided for the density
function, distribution function, quantiles, random number generation and
fitting the hyperbolic distribution to data (hyperbFit
). The
function hyperbChangePars
will interchange parameter values
between different parameterizations. The mean, variance, skewness,
kurtosis and mode of a given hyperbolic distribution are given by
hyperbMean
, hyperbVar
, hyperbSkew
,
hyperbKurt
, and hyperbMode
respectively. For assessing the
fit of the hyperbolic distribution to a set of data, the log-histogram
is useful. See logHist
from package
DistributionUtils. Q-Q and P-P
plots are also provided for assessing the fit of a hyperbolic
distribution. A Cramér-von~Mises test of the goodness of
fit of data to a hyperbolic distribution is given by
hyperbCvMTest
. S3 print
, plot
and summary
methods are provided for the output of hyperbFit
.
For the generalized hyperbolic distribution functions are provided for
the density function, distribution function, quantiles, and for random
number generation. The function ghypChangePars
will interchange
parameter values between different parameterizations. The mean, variance, and
mode of a given generalized hyperbolic distribution are given by
ghypMean
, ghypVar
, ghypSkew
, ghypKurt
, and
ghypMode
respectively. Q-Q and P-P plots are also provided for
assessing the fit of a generalized hyperbolic distribution.
For the generalized inverse Gaussian distribution functions are provided for
the density function, distribution function, quantiles, and for random
number generation. The function gigChangePars
will interchange
parameter values between different parameterizations. The mean,
variance, skewness, kurtosis and mode of a given generalized inverse
Gaussian distribution are given by gigMean
, gigVar
,
gigSkew
, gigKurt
, and gigMode
respectively. Q-Q and
P-P plots are also provided for assessing the fit of a generalized
inverse Gaussian distribution.
For the skew-Laplace distribution functions are provided for the density function, distribution function, quantiles, and for random number generation. Q-Q and P-P plots are also provided for assessing the fit of a skew-Laplace distribution.
A number of students have worked on the package: Ai-Wei Lee, Jennifer Tso, Richard Trendall, Thomas Tran, Simon Potter and David Cusack.
Thanks to Ross Ihaka and Paul Murrell for their willingness to answer my questions, and to all the core group for the development of R.
Special thanks also to Diethelm Würtz without whose advice, this package would be far inferior.
This package and its documentation are usable under the terms of the "GNU General Public License", a copy of which is distributed with the package.
David Scott d.scott@auckland.ac.nz
Barndorff-Nielsen, O. (1977) Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen, O. and Blæsild, P (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
Fieller, N. J., Flenley, E. C. and Olbricht, W. (1992) Statistics of particle size data. Appl. Statist., 41, 127–146.
Jörgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, Vol. 9, Springer-Verlag, New York.
Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.