View source: R/ghypChangePars.R
ghypChangePars | R Documentation |
This function interchanges between the following 5 parameterizations of the generalized hyperbolic distribution:
1. \mu, \delta, \alpha, \beta, \lambda
2. \mu, \delta, \rho, \zeta, \lambda
3. \mu, \delta, \xi, \chi, \lambda
4. \mu, \delta, \bar\alpha, \bar\beta, \lambda
5. \mu, \delta, \pi, \zeta, \lambda
The first four are the parameterizations given in Prause (1999). The final parameterization has proven useful in fitting.
ghypChangePars(from, to, param, noNames = FALSE)
from |
The set of parameters to change from. |
to |
The set of parameters to change to. |
param |
"from" parameter vector consisting of 5 numerical elements. |
noNames |
Logical. When |
In the 5 parameterizations, the following must be positive:
1. \alpha, \delta
2. \zeta, \delta
3. \xi, \delta
4. \bar\alpha, \delta
5. \zeta, \delta
Furthermore, note that in the first parameterization
\alpha
must be greater than the absolute value of
\beta
; in the third parameterization, \xi
must be less than one, and the absolute value of \chi
must
be less than \xi
; and in the fourth parameterization,
\bar\alpha
must be greater than the absolute value of
\bar\beta
.
A numerical vector of length 5 representing param
in the
to
parameterization.
David Scott d.scott@auckland.ac.nz, Jennifer Tso, Richard Trendall
Barndorff-Nielsen, O. and Blæsild, P. (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
Prause, K. (1999) The generalized hyperbolic models: Estimation, financial derivatives and risk measurement. PhD Thesis, Mathematics Faculty, University of Freiburg.
dghyp
param1 <- c(0, 3, 2, 1, 2) # Parameterization 1
param2 <- ghypChangePars(1, 2, param1) # Convert to parameterization 2
param2 # Parameterization 2
ghypChangePars(2, 1, param2) # Back to parameterization 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.