GeneralizedHyperbolicPlots | R Documentation |
qqghyp
produces a generalized hyperbolic Q-Q plot of the values in
y
.
ppghyp
produces a generalized hyperbolic P-P (percent-percent) or
probability plot of the values in y
.
Graphical parameters may be given as arguments to qqghyp
,
and ppghyp
.
qqghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1,
param = c(mu, delta, alpha, beta, lambda),
main = "Generalized Hyperbolic Q-Q Plot",
xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles",
plot.it = TRUE, line = TRUE, ...)
ppghyp(y, mu = 0, delta = 1, alpha = 1, beta = 0, lambda = 1,
param = c(mu, delta, alpha, beta, lambda),
main = "Generalized Hyperbolic P-P Plot",
xlab = "Uniform Quantiles",
ylab = "Probability-integral-transformed Data",
plot.it = TRUE, line = TRUE, ...)
y |
The data sample. |
mu |
|
delta |
|
alpha |
|
beta |
|
lambda |
|
param |
Parameters of the generalized hyperbolic distribution. |
xlab, ylab, main |
Plot labels. |
plot.it |
Logical. Should the result be plotted? |
line |
Add line through origin with unit slope. |
... |
Further graphical parameters. |
For qqghyp
and ppghyp
, a list with components:
x |
The x coordinates of the points that are to be plotted. |
y |
The y coordinates of the points that are to be plotted. |
Wilk, M. B. and Gnanadesikan, R. (1968) Probability plotting methods for the analysis of data. Biometrika. 55, 1–17.
ppoints
, dghyp
.
par(mfrow = c(1, 2))
y <- rghyp(200, param = c(2, 2, 2, 1, 2))
qqghyp(y, param = c(2, 2, 2, 1, 2), line = FALSE)
abline(0, 1, col = 2)
ppghyp(y, param = c(2, 2, 2, 1, 2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.