Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(GlmSimulatoR)
library(ggplot2)
library(stats)
set.seed(1)
simdata <- simulate_gaussian(
N = 1000, weights = c(1, 3), link = "inverse",
unrelated = 1, ancillary = .005
)
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = Y)) +
geom_histogram(bins = 30)
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = X1, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = X2, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = Unrelated1, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
cor(x = simdata$X1, y = simdata$Y)
cor(x = simdata$X2, y = simdata$Y)
cor(x = simdata$Unrelated1, y = simdata$Y)
## -----------------------------------------------------------------------------
glm_inverse_x2 <- glm(Y ~ X2,
data = simdata,
family = gaussian(link = "inverse")
)
glm_inverse_x1_x2 <- glm(Y ~ X1 + X2,
data = simdata,
family = gaussian(link = "inverse")
)
glm_inverse_x1x2u1 <- glm(Y ~ X1 + X2 + Unrelated1,
data = simdata,
family = gaussian(link = "inverse")
)
summary(glm_inverse_x2)$aic
summary(glm_inverse_x1_x2)$aic # correct model
summary(glm_inverse_x1x2u1)$aic
## -----------------------------------------------------------------------------
library(GlmSimulatoR)
library(ggplot2)
library(stats)
set.seed(1)
simdata <- simulate_gaussian(
N = 1000, weights = c(.3, .8), link = "log",
unrelated = 1, ancillary = 1
)
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = Y)) +
geom_histogram(bins = 30)
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = X1, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = X2, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
ggplot(simdata, aes(x = Unrelated1, y = Y)) +
geom_point()
## -----------------------------------------------------------------------------
cor(x = simdata$X1, y = simdata$Y)
cor(x = simdata$X2, y = simdata$Y)
cor(x = simdata$Unrelated1, y = simdata$Y)
## -----------------------------------------------------------------------------
glm_identity <- glm(Y ~ X1 + X2,
data = simdata,
family = gaussian(link = "identity")
)
glm_inverse <- glm(Y ~ X1 + X2,
data = simdata,
family = gaussian(link = "inverse")
)
glm_log <- glm(Y ~ X1 + X2,
data = simdata,
family = gaussian(link = "log")
)
summary(glm_identity)$aic
summary(glm_inverse)$aic
summary(glm_log)$aic # correct model.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.