View source: R/SF2006.GLHT.NABT.R
SF2006.GLHT.NABT | R Documentation |
Srivastava and Fujikoshi (2006)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data with assuming that underlying covariance matrices are the same.
SF2006.GLHT.NABT(Y,X,C,n,p)
Y |
A list of |
X |
A known |
C |
A known matrix of size |
n |
A vector of |
p |
The dimension of data. |
A high-dimensional linear regression model can be expressed as
\boldsymbol{Y}=\boldsymbol{X\Theta}+\boldsymbol{\epsilon},
where \Theta
is a k\times p
unknown parameter matrix and \boldsymbol{\epsilon}
is an n\times p
error matrix.
It is of interest to test the following GLHT problem
H_0: \boldsymbol{C\Theta}=\boldsymbol{0}, \quad \text { vs. } \quad H_1: \boldsymbol{C\Theta} \neq \boldsymbol{0}.
Srivastava and Fujikoshi (2006) proposed the following test statistic:
T_{SF}=\left[2q\hat{a}_2(1+(n-k)^{-1}q)\right]^{-1/2}\left[\frac{\operatorname{tr}(\boldsymbol{B})}{\sqrt{p}}-\frac{q}{\sqrt{n-k}}\frac{\operatorname{tr}(\boldsymbol{W})}{\sqrt{(n-k)p}}\right].
where \boldsymbol{W}
and \boldsymbol{B}
are the matrix of sum of squares and products due to error and the error, respectively, and \hat{a}_2=[\operatorname{tr}(\boldsymbol{W}^2)-\operatorname{tr}^2(\boldsymbol{W})/(n-k)]/[(n-k-1)(n-k+2)p]
.
They showed that under the null hypothesis, T_{SF}
is asymptotically normally distributed.
A list of class "NRtest"
containing the results of the hypothesis test. See the help file for NRtest.object
for details.
srivastava2006multivariateHDNRA
library("HDNRA")
data("corneal")
dim(corneal)
group1 <- as.matrix(corneal[1:43, ]) ## normal group
group2 <- as.matrix(corneal[44:57, ]) ## unilateral suspect group
group3 <- as.matrix(corneal[58:78, ]) ## suspect map group
group4 <- as.matrix(corneal[79:150, ]) ## clinical keratoconus group
p <- dim(corneal)[2]
Y <- list()
k <- 4
Y[[1]] <- group1
Y[[2]] <- group2
Y[[3]] <- group3
Y[[4]] <- group4
n <- c(nrow(Y[[1]]),nrow(Y[[2]]),nrow(Y[[3]]),nrow(Y[[4]]))
X <- matrix(c(rep(1,n[1]),rep(0,sum(n)),rep(1,n[2]), rep(0,sum(n)),
rep(1,n[3]),rep(0,sum(n)),rep(1,n[4])),ncol=k,nrow=sum(n))
q <- k-1
C <- cbind(diag(q),-rep(1,q))
SF2006.GLHT.NABT(Y,X,C,n,p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.