View source: R/ZZG2022.GLHTBF.2cNRT.R
ZZG2022.GLHTBF.2cNRT | R Documentation |
Zhang et al. (2022)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data under heteroscedasticity.
ZZG2022.GLHTBF.2cNRT(Y,G,n,p)
Y |
A list of |
G |
A known full-rank coefficient matrix ( |
n |
A vector of |
p |
The dimension of data. |
Suppose we have the following k
independent high-dimensional samples:
\boldsymbol{y}_{i1},\ldots,\boldsymbol{y}_{in_i}, \;\operatorname{are \; i.i.d. \; with}\; \operatorname{E}(\boldsymbol{y}_{i1})=\boldsymbol{\mu}_i,\; \operatorname{Cov}(\boldsymbol{y}_{i1})=\boldsymbol{\Sigma}_i,i=1,\ldots,k.
It is of interest to test the following GLHT problem:
H_0: \boldsymbol{G M}=\boldsymbol{0}, \quad \text { vs. } \; H_1: \boldsymbol{G M} \neq \boldsymbol{0},
where
\boldsymbol{M}=(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k)^\top
is a k\times p
matrix collecting k
mean vectors and \boldsymbol{G}:q\times k
is a known full-rank coefficient matrix with \operatorname{rank}(\boldsymbol{G})<k
.
Zhang et al. (2022) proposed the following test statistic:
T_{ZZG}=\|\boldsymbol{C} \hat{\boldsymbol{\mu}}\|^2,
where \boldsymbol{C}=[(\boldsymbol{G D G}^\top)^{-1/2}\boldsymbol{G}]\otimes\boldsymbol{I}_p
with \boldsymbol{D}=\operatorname{diag}(1/n_1,\ldots,1/n_k)
, and \hat{\boldsymbol{\mu}}=(\bar{\boldsymbol{y}}_1^\top,\ldots,\bar{\boldsymbol{y}}_k^\top)^\top
with \bar{\boldsymbol{y}}_{i},i=1,\ldots,k
being the sample mean vectors.
They showed that under the null hypothesis, T_{ZZG}
and a chi-squared-type mixture have the same normal or non-normal limiting distribution.
A list of class "NRtest"
containing the results of the hypothesis test. See the help file for NRtest.object
for details.
zhang2022linearHDNRA
library("HDNRA")
data("corneal")
dim(corneal)
group1 <- as.matrix(corneal[1:43, ]) ## normal group
group2 <- as.matrix(corneal[44:57, ]) ## unilateral suspect group
group3 <- as.matrix(corneal[58:78, ]) ## suspect map group
group4 <- as.matrix(corneal[79:150, ]) ## clinical keratoconus group
p <- dim(corneal)[2]
Y <- list()
k <- 4
Y[[1]] <- group1
Y[[2]] <- group2
Y[[3]] <- group3
Y[[4]] <- group4
n <- c(nrow(Y[[1]]),nrow(Y[[2]]),nrow(Y[[3]]),nrow(Y[[4]]))
G <- cbind(diag(k-1),rep(-1,k-1))
ZZG2022.GLHTBF.2cNRT(Y,G,n,p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.