View source: R/ZZZ2022.GLHT.2cNRT.R
ZZZ2022.GLHT.2cNRT | R Documentation |
Zhu et al. (2022)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data with assuming that underlying covariance matrices are the same.
ZZZ2022.GLHT.2cNRT(Y,X,C,n,p)
Y |
A list of |
X |
A known |
C |
A known matrix of size |
n |
A vector of |
p |
The dimension of data. |
A high-dimensional linear regression model can be expressed as
\boldsymbol{Y}=\boldsymbol{X\Theta}+\boldsymbol{\epsilon},
where \Theta
is a k\times p
unknown parameter matrix and \boldsymbol{\epsilon}
is an n\times p
error matrix.
It is of interest to test the following GLHT problem
H_0: \boldsymbol{C\Theta}=\boldsymbol{0}, \quad \text { vs. } H_1: \boldsymbol{C\Theta} \neq \boldsymbol{0}.
Zhu et al. (2022) proposed the following test statistic:
T_{ZZZ}=\frac{(n-k-2)}{(n-k)pq}\operatorname{tr}(\boldsymbol{S}_h\boldsymbol{D}^{-1}),
where \boldsymbol{S}_h
and \boldsymbol{S}_e
are the variation matrices due to the hypothesis and error, respectively, and \boldsymbol{D}
is the diagonal matrix with the diagonal elements of \boldsymbol{S}_e/(n-k)
.
They showed that under the null hypothesis, T_{ZZZ}
and a chi-squared-type mixture have the same limiting distribution.
A list of class "NRtest"
containing the results of the hypothesis test. See the help file for NRtest.object
for details.
Zhu_2023HDNRA
library("HDNRA")
data("corneal")
dim(corneal)
group1 <- as.matrix(corneal[1:43, ]) ## normal group
group2 <- as.matrix(corneal[44:57, ]) ## unilateral suspect group
group3 <- as.matrix(corneal[58:78, ]) ## suspect map group
group4 <- as.matrix(corneal[79:150, ]) ## clinical keratoconus group
p <- dim(corneal)[2]
Y <- list()
k <- 4
Y[[1]] <- group1
Y[[2]] <- group2
Y[[3]] <- group3
Y[[4]] <- group4
n <- c(nrow(Y[[1]]),nrow(Y[[2]]),nrow(Y[[3]]),nrow(Y[[4]]))
X <- matrix(c(rep(1,n[1]),rep(0,sum(n)),rep(1,n[2]), rep(0,sum(n)),
rep(1,n[3]),rep(0,sum(n)),rep(1,n[4])),ncol=k,nrow=sum(n))
q <- k-1
C <- cbind(diag(q),-rep(1,q))
ZZZ2022.GLHT.2cNRT(Y,X,C,n,p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.