predict.HDtweedie | R Documentation |
Similar to other predict methods, this functions predicts fitted values from a HDtweedie
object.
## S3 method for class 'HDtweedie' predict(object, newx, s = NULL, type=c("response","link"), ...)
object |
fitted |
newx |
matrix of new values for |
s |
value(s) of the penalty parameter |
type |
type of prediction required:
|
... |
Not used. Other arguments to predict. |
s
is the new vector at which predictions are requested. If s
is not in the lambda sequence used for fitting the model, the predict
function will use linear interpolation to make predictions. The new values are interpolated using a fraction of predicted values from both left and right lambda
indices.
The object returned depends on type.
Wei Qian, Yi Yang and Hui Zou
Maintainer: Wei Qian <weiqian@stat.umn.edu>
Qian, W., Yang, Y., Yang, Y. and Zou, H. (2016), “Tweedie's Compound
Poisson Model With Grouped Elastic Net,” Journal of Computational and Graphical Statistics, 25, 606-625.
coef
method
# load HDtweedie library library(HDtweedie) # load auto data set data(auto) # fit the lasso m0 <- HDtweedie(x=auto$x,y=auto$y,p=1.5) # predicted mean response at x[10,] print(predict(m0,type="response",newx=auto$x[10,])) # define group index group1 <- c(rep(1,5),rep(2,7),rep(3,4),rep(4:14,each=3),15:21) # fit the grouped lasso m1 <- HDtweedie(x=auto$x,y=auto$y,group=group1,p=1.5) # predicted the log mean response at x[1:5,] print(predict(m1,type="link",newx=auto$x[1:5,]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.